Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Let \(\lambda \) be an eigenvalue of an invertible matrix A. Show that \({\lambda ^{ - {\bf{1}}}}\) is an eigenvalue of \({A^{ - {\bf{1}}}}\). (Hint: Suppose a nonzero x satisfies \(A{\bf{x}} = \lambda {\bf{x}}\))

Short Answer

Expert verified

\({\lambda ^{ - 1}}\) is an eigenvalue of \({A^{ - 1}}\).

Step by step solution

01

Write the given information

For an invertible matrix A, \(\lambda \) is an eigenvalue.

02

Check for the eigenvalue of \({A^{ - {\bf{1}}}}\)

If \(\lambda \) is an eigenvalue of A, then there exists a nonzero vector \(x\) such as that \(A{\bf{x}} = \lambda {\bf{x}}\).

Since A is invertible, then \({A^{ - 1}}A{\bf{x}} = {A^{ - 1}}\left( {\lambda {\bf{x}}} \right)\).

As \(x \ne 0\), so \(\lambda \) cannot be equal to zero. Therefore, \({\lambda ^{ - 1}}{\bf{x}} = {A^{ - 1}}{\bf{x}}\).

The above equation shows that, \({\lambda ^{ - 1}}\) is an eigenvalue of \({A^{ - 1}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Define\(T:{{\rm P}_3} \to {\mathbb{R}^4}\)by\(T\left( {\bf{p}} \right) = \left( {\begin{aligned}{{\bf{p}}\left( { - 3} \right)}\\{{\bf{p}}\left( { - 1} \right)}\\{{\bf{p}}\left( 1 \right)}\\{{\bf{p}}\left( 3 \right)}\end{aligned}} \right)\).

  1. Show that \(T\) is a linear transformation.
  2. Find the matrix for \(T\) relative to the basis \(\left\{ {1,t,{t^2},{t^3}} \right\}\)for \({{\rm P}_3}\)and the standard basis for \({\mathbb{R}^4}\).

(M)The MATLAB command roots\(\left( p \right)\) computes the roots of the polynomial equation \(p\left( t \right) = {\bf{0}}\). Read a MATLAB manual, and then describe the basic idea behind the algorithm for the roots command.

Question: Exercises 9-14 require techniques section 3.1. Find the characteristic polynomial of each matrix, using either a cofactor expansion or the special formula for \(3 \times 3\) determinants described prior to Exercise 15-18 in Section 3.1. [Note: Finding the characteristic polynomial of a \(3 \times 3\) matrix is not easy to do with just row operations, because the variable \(\lambda \) is involved.

12. \(\left[ {\begin{array}{*{20}{c}}- 1&0&1\\- 3&4&1\\0&0&2\end{array}} \right]\)

Consider the growth of a lilac bush. The state of this lilac bush for several years (at year’s end) is shown in the accompanying sketch. Let n(t) be the number of new branches (grown in the year t) and a(t) the number of old branches. In the sketch, the new branches are represented by shorter lines. Each old branch will grow two new branches in the following year. We assume that no branches ever die.

(a) Find the matrix A such that [nt+1at+1]=A[ntat]

(b) Verify that [11]and [2-1] are eigenvectors of A. Find the associated eigenvalues.

(c) Find closed formulas for n(t) and a(t).

Apply the results of Exercise \({\bf{15}}\) to find the eigenvalues of the matrices \(\left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{2}}&{\bf{2}}\\{\bf{2}}&{\bf{1}}&{\bf{2}}\\{\bf{2}}&{\bf{2}}&{\bf{1}}\end{aligned}} \right)\) and \(\left( {\begin{aligned}{*{20}{c}}{\bf{7}}&{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{7}}&{\bf{3}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{7}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{7}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{7}}\end{aligned}} \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free