Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Construct an example of a \({\bf{2}} \times {\bf{2}}\) matrix with only one distinct eigenvalue.

Short Answer

Expert verified

The examples are \(\left( {\begin{array}{*{20}{c}}4&1\\0&4\end{array}} \right)\) and \(\left( {\begin{array}{*{20}{c}}4&5\\0&4\end{array}} \right)\).

Step by step solution

01

Write the concept for a matrix to have one eigenvalue

For a \(2 \times 2\) matrix, there is only one unique eigenvalue. Then the matrix must be a triangular matrix with similar elements in its diagonal.

If the matrix is such a diagonal matrix, then the eigenspace must be two-dimensional.

02

Write the example of \({\bf{2}} \times {\bf{2}}\) the matrix

The two examples of such a matrix are:

\(\left( {\begin{array}{*{20}{c}}4&1\\0&4\end{array}} \right)\) and \(\left( {\begin{array}{*{20}{c}}4&5\\0&4\end{array}} \right)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Construct a random integer-valued \(4 \times 4\) matrix \(A\), and verify that \(A\) and \({A^T}\) have the same characteristic polynomial (the same eigenvalues with the same multiplicities). Do \(A\) and \({A^T}\) have the same eigenvectors? Make the same analysis of a \(5 \times 5\) matrix. Report the matrices and your conclusions.

Question: In Exercises \({\bf{5}}\) and \({\bf{6}}\), the matrix \(A\) is factored in the form \(PD{P^{ - {\bf{1}}}}\). Use the Diagonalization Theorem to find the eigenvalues of \(A\) and a basis for each eigenspace.

5. \(\left( {\begin{array}{*{20}{c}}2&2&1\\1&3&1\\1&2&2\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&1&2\\1&0&{ - 1}\\1&{ - 1}&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}5&0&0\\0&1&0\\0&0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\frac{1}{4}}&{\frac{1}{2}}&{\frac{1}{4}}\\{\frac{1}{4}}&{\frac{1}{2}}&{ - \frac{3}{4}}\\{\frac{1}{4}}&{ - \frac{1}{2}}&{\frac{1}{4}}\end{array}} \right)\)

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

4. \(\left[ {\begin{array}{*{20}{c}}5&-3\\-4&3\end{array}} \right]\)

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

15. \(\left( {\begin{array}{*{20}{c}}{\bf{7}}&{\bf{4}}&{{\bf{16}}}\\{\bf{2}}&{\bf{5}}&{\bf{8}}\\{{\bf{ - 2}}}&{{\bf{ - 2}}}&{{\bf{ - 5}}}\end{array}} \right)\)

If \(p\left( t \right) = {c_0} + {c_1}t + {c_2}{t^2} + ...... + {c_n}{t^n}\), define \(p\left( A \right)\) to be the matrix formed by replacing each power of \(t\) in \(p\left( t \right)\)by the corresponding power of \(A\) (with \({A^0} = I\) ). That is,

\(p\left( t \right) = {c_0} + {c_1}I + {c_2}{I^2} + ...... + {c_n}{I^n}\)

Show that if \(\lambda \) is an eigenvalue of A, then one eigenvalue of \(p\left( A \right)\) is\(p\left( \lambda \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free