Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left[ {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right]\).

22. Let \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + {a_{\bf{2}}}{t^{\bf{2}}} + {t^{\bf{3}}}\), and let \(\lambda \) be a zero of \(p\).

  1. Write the companion matrix for \(p\).
  2. Explain why \({\lambda ^{\bf{3}}} = - {a_{\bf{0}}} - {a_{\bf{1}}}\lambda - {a_{\bf{2}}}{\lambda ^{\bf{2}}}\), and show that \(\left( {{\bf{1}},\lambda ,{\lambda ^2}} \right)\) is an eigenvector of the companion matrix for \(p\).

Short Answer

Expert verified
  1. The companion matrix for \(p\)is\({C_p} = \left[ {\begin{aligned}{*{20}{c}}0&1&0\\0&0&1\\{ - {a_0}}&{ - {a_1}}&{ - {a_2}}\end{aligned}} \right]\).
  2. As \(\lambda \) is a zero of the matrix, this implies that \( - {a_0} - {a_1}\lambda - {a_2}{\lambda ^2} = {\lambda ^3}\). It is proved that \(\left( {1,\lambda ,{\lambda ^2}} \right)\) is an eigenvector of the companion matrix \(p\).

Step by step solution

01

Step 1: Write the companion matrix for \(p\)

Considerthe polynomial \(p\left( t \right) = {a_0} + {a_1}t + ... + {a_{n - 1}}{t^{n - 1}} + {t^n}\).

The companion matrix of \(p\)is\({C_p} = \left[ {\begin{aligned}{*{20}{c}}0&1&0\\0&0&1\\{ - {a_0}}&{ - {a_1}}&{ - {a_2}}\end{aligned}} \right]\).

Thus, the companion matrix for \(p\)is\({C_p} = \left[ {\begin{aligned}{*{20}{c}}0&1&0\\0&0&1\\{ - {a_0}}&{ - {a_1}}&{ - {a_2}}\end{aligned}} \right]\).

02

Step 2: Show that \(\left( {{\bf{1}},\lambda ,{\lambda ^2}} \right)\) is an eigenvector of the companion matrix for \(p\)

As \(\lambda \) is a zero of the given polynomial \(p\left( t \right)\) then we have,

\(\begin{aligned}{c}{a_0} + {a_1}\lambda + {a_2}{\lambda ^2} + {\lambda ^3} = 0\\ - {a_0} - {a_1}\lambda - {a_2}{\lambda ^2} = {\lambda ^3}\end{aligned}\)

Now check whether \(\left( {1,\lambda ,{\lambda ^2}} \right)\) is an eigenvector of \({C_p}\).

\(\begin{aligned}{c}{C_p} &= \left[ {\begin{aligned}{*{20}{c}}1\\\lambda \\{{\lambda ^2}}\end{aligned}} \right]\\ &= \left[ {\begin{aligned}{*{20}{c}}0&1&0\\0&0&1\\{ - {a_0}}&{ - {a_1}}&{ - {a_2}}\end{aligned}} \right]\left[ {\begin{aligned}{*{20}{c}}1\\\lambda \\{{\lambda ^2}}\end{aligned}} \right]\\ &= \left[ {\begin{aligned}{*{20}{c}}\lambda \\{{\lambda ^2}}\\{ - {a_0} - {a_1}\lambda - {a_2}{\lambda ^2}}\end{aligned}} \right]\\ &= \left[ {\begin{aligned}{*{20}{c}}\lambda \\{{\lambda ^2}}\\{{\lambda ^3}}\end{aligned}} \right]\\ &= \lambda \left[ {\begin{aligned}{*{20}{c}}1\\\lambda \\{{\lambda ^2}}\end{aligned}} \right]\end{aligned}\)

Thus, \(\left( {1,\lambda ,{\lambda ^2}} \right)\) is an eigenvector of \({C_p}\).

Hence it is proved that \(\left( {1,\lambda ,{\lambda ^2}} \right)\) is an eigenvector of the companion matrix \(p\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question 20: Use a property of determinants to show that \(A\) and \({A^T}\) have the same characteristic polynomial.

Question: Let \(A = \left( {\begin{array}{*{20}{c}}{ - 6}&{28}&{21}\\4&{ - 15}&{ - 12}\\{ - 8}&a&{25}\end{array}} \right)\). For each value of \(a\) in the set \(\left\{ {32,31.9,31.8,32.1,32.2} \right\}\), compute the characteristic polynomial of \(A\) and the eigenvalues. In each case, create a graph of the characteristic polynomial \(p\left( t \right) = \det \left( {A - tI} \right)\) for \(0 \le t \le 3\). If possible, construct all graphs on one coordinate system. Describe how the graphs reveal the changes in the eigenvalues of \(a\) changes.


For the matrix A,find real closed formulas for the trajectory x(t+1)=Ax¯(t)wherex=[01]. Draw a rough sketchA=[-0.51.5-0.61.3]

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

2. \(\left[ {\begin{array}{*{20}{c}}5&3\\3&5\end{array}} \right]\)

Question: In Exercises \({\bf{5}}\) and \({\bf{6}}\), the matrix \(A\) is factored in the form \(PD{P^{ - {\bf{1}}}}\). Use the Diagonalization Theorem to find the eigenvalues of \(A\) and a basis for each eigenspace.

5. \(\left( {\begin{array}{*{20}{c}}2&2&1\\1&3&1\\1&2&2\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&1&2\\1&0&{ - 1}\\1&{ - 1}&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}5&0&0\\0&1&0\\0&0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\frac{1}{4}}&{\frac{1}{2}}&{\frac{1}{4}}\\{\frac{1}{4}}&{\frac{1}{2}}&{ - \frac{3}{4}}\\{\frac{1}{4}}&{ - \frac{1}{2}}&{\frac{1}{4}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free