Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

[M] In Exercises 19 and 20, find (a) the largest eigenvalue and (b) the eigenvalue closest to zero. In each case, set \[{{\bf{x}}_{\bf{0}}}{\bf{ = }}\left( {{\bf{1,0,0,0}}} \right)\] and carry out approximations until the approximating sequence seems accurate to four decimal places. Include the approximate eigenvector.

20. \[A{\bf{ = }}\left[ {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{2}}&{\bf{3}}&{\bf{2}}\\{\bf{2}}&{{\bf{12}}}&{{\bf{13}}}&{{\bf{11}}}\\{{\bf{ - 2}}}&{\bf{3}}&{\bf{0}}&{\bf{2}}\\{\bf{4}}&{\bf{5}}&{\bf{7}}&{\bf{2}}\end{array}} \right]\]

Short Answer

Expert verified
  1. The largest eigenvalue is\[19.1820368\].
  1. An estimate for the eigenvalue to four decimal places is \[0.01220\] and the corresponding eigenvector is \[\left[ {\begin{array}{*{20}{c}}1\\{0.222577}\\{ - 0.917970}\\{0.660496}\end{array}} \right]\].

Step by step solution

01

Write the function to compute the power matrices

(a)

\[{\rm{function}}\left[ {x,{\rm{lambda}}} \right] = {\rm{powermat}}(A,{x_0},{\rm{nit)}}\]

\[x = {x_0}\];

For\[n = 1:{\rm{nit}}\]

\[{\rm{xnew}} = A*{\rm{x}}\]

\[{\rm{lambda}} = {\rm{norm(xnew,inf)/norm(x,inf);}}\]

\[{\rm{fprintf('n}} = {\rm{\% 4d}}\;{\rm{lambda}} = {\rm{\% gx}} = {\rm{\% g\% g\% g\backslash n',n,lambda,x');}}\]

\[{\rm{x}} = {\rm{xnew;}}\;{\rm{end x}} = {\rm{x/norm(x);\% normalise x fprintf('n}} = {\rm{\% 4d normalised x}} = {\rm{\% g\% g\% g\backslash n',n,x');}}\]

02

Find the middle eigenvalue

(b)

Enter the Matrix\[B\]in MATLAB:

\[ > > \;A = \left[ {1\;2\;3\;2;\;2\;12\;13\;11;\; - 2\;3\;0\;2;\;4\;5\;7\;2} \right]\]

Enter the\[{x_0}\]in MATLAB:

\[ > > {x_0} = \left[ {1\;0\;0\;0} \right]'\]

Now find the eigenvector.

\[ > > {\rm{powermat(}}A,{x_0},7)\]

Construct the data in the table shown below:

\[k\]

\[0\]

\[1\]

\[2\]

\[3\]

\[4\]

\[{{\bf{x}}_k}\]

\[\left[ {\begin{array}{*{20}{c}}1\\0\\0\\0\end{array}} \right]\]

\[\left[ {\begin{array}{*{20}{c}}{.25}\\{.5}\\{ - .5}\\1\end{array}} \right]\]

\[\left[ {\begin{array}{*{20}{c}}{.159091}\\1\\{.272727}\\{.181818}\end{array}} \right]\]

\[\left[ {\begin{array}{*{20}{c}}{.187023}\\1\\{.170483}\\\begin{array}{l}.942201\\.442748\end{array}\end{array}} \right]\]

\[\left[ {\begin{array}{*{20}{c}}{.184166}\\1\\{.180439}\\{.402197}\end{array}} \right]\]

\[A{{\bf{x}}_k}\]

\[\left[ {\begin{array}{*{20}{c}}1\\2\\{ - 2}\\4\end{array}} \right]\]

\[\left[ {\begin{array}{*{20}{c}}{1.75}\\{11}\\3\\2\end{array}} \right]\]

\[\left[ {\begin{array}{*{20}{c}}{3.34091}\\{17.8636}\\{3.04545}\\{7.90909}\end{array}} \right]\]

\[\left[ {\begin{array}{*{20}{c}}{3.58397}\\{19.4606}\\{3.51145}\\{7.82697}\end{array}} \right]\]

\[\left[ {\begin{array}{*{20}{c}}{3.52988}\\{19.1382}\\{3.43606}\\{7.80413}\end{array}} \right]\]

\[{\mu _k}\]

\[4\]

\[11\]

\[17.8636\]

\[19.4606\]

\[19.1382\]

\[k\]

\[5\]

\[6\]

\[7\]

\[{{\bf{x}}_k}\]

\[\left[ {\begin{array}{*{20}{c}}{.184441}\\1\\{.179539}\\{.407778}\end{array}} \right]\]

\[\left[ {\begin{array}{*{20}{c}}{.184414}\\1\\{.179622}\\{.407021}\end{array}} \right]\]

\[\left[ {\begin{array}{*{20}{c}}{.184417}\\1\\{.179615}\\{.407121}\end{array}} \right]\]

\[A{{\bf{x}}_k}\]

\[\left[ {\begin{array}{*{20}{c}}{3.53861}\\{19.1884}\\{3.44667}\\{7.81010}\end{array}} \right]\]

\[\left[ {\begin{array}{*{20}{c}}{3.53732}\\{19.1811}\\{3.44521}\\{7.80905}\end{array}} \right]\]

\[\left[ {\begin{array}{*{20}{c}}{3.53750}\\{19.1822}\\{3.44541}\\{7.80921}\end{array}} \right]\]

\[{\mu _k}\]

\[19.1884\]

\[19.1811\]

\[19.1822\]

The value of \[{\mu _7} = 19.1820 = {\mu _8}\], the largest eigenvalue is\[19.1820368\].

03

Write the function of MATLAB

\[{\rm{function}}\left[ {{\rm{v,lambda}}} \right]{\rm{ = IPM}}\left( {{\rm{B,tol}}} \right)\]

tic;

\[{\rm{A}} = {\rm{inv}}\left( {\rm{B}} \right){\rm{;}}\]

\[{\rm{n}} = {\rm{size}}\left( {{\rm{A}},1} \right);\]

\[{\rm{v}} = {\rm{rand}}\left( {{\rm{n}},1} \right);\]

\[{\rm{v}} = {\rm{v}}/{\rm{norm}}\left( {\rm{v}} \right);\]

\[{\rm{res}} = 1;\]

\[{\rm{while}}\left( {{\rm{rse}} > {\rm{tol}}} \right)\]

\[{\rm{W}} = {\rm{A}}*{\rm{v}};\]

\[{\rm{lambda}} = {\rm{max}}\left( {{\rm{abs}}\left( {\rm{W}} \right)} \right);\]

\[{\rm{V}} = {\rm{W}}/{\rm{lamda}};\]

\[{\rm{res}} = {\rm{norm}}\left( {{\rm{A}}*{\rm{v}} - {\rm{lambda}}*{\rm{v}}} \right);\]

toc

end

04

Find the eigenvector

Enter the Matrix\[B\]in MATLAB:

\[ > > \;A = \left[ {1\;2\;3\;2;\;2\;12\;13\;11;\; - 2\;3\;0\;2;\;4\;5\;7\;2} \right]\]

Now find the Eigenvalue.

\[{\rm{ > > IPM}}\left( {{\rm{B,tol}}} \right)\]

Construct the data in the table shown below:

\[k\]

\[0\]

\[1\]

\[2\]

\[{{\bf{x}}_k}\]

\[\left[ {\begin{array}{*{20}{c}}1\\0\\0\\0\end{array}} \right]\]

\[\left[ {\begin{array}{*{20}{c}}1\\{.226087}\\{ - .921739}\\{.660870}\end{array}} \right]\]

\[\left[ {\begin{array}{*{20}{c}}1\\{.222577}\\{ - .917970}\\{.660496}\end{array}} \right]\]

\[A{{\bf{x}}_k}\]

\[\left[ {\begin{array}{*{20}{c}}{115}\\{26}\\{ - 106}\\{76}\end{array}} \right]\]

\[\left[ {\begin{array}{*{20}{c}}{81.7304}\\{18.1913}\\{ - 75.0261}\\{53.9826}\end{array}} \right]\]

\[\left[ {\begin{array}{*{20}{c}}{81.9314}\\{18.2387}\\{ - 75.2125}\\{54.1143}\end{array}} \right]\]

\[{\mu _k}\]

\[115\]

\[81.7304\]

\[81.9314\]

\[{v_k}\]

\[.00869565\]

\[.0122353\]

\[.0122053\]

Thus, an estimate for the eigenvalue to five decimal places is\[0.01220\]and the corresponding eigenvector is\[\left[ {\begin{array}{*{20}{c}}1\\{0.222577}\\{ - 0.917970}\\{0.660496}\end{array}} \right]\].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Construct a random integer-valued \(4 \times 4\) matrix \(A\), and verify that \(A\) and \({A^T}\) have the same characteristic polynomial (the same eigenvalues with the same multiplicities). Do \(A\) and \({A^T}\) have the same eigenvectors? Make the same analysis of a \(5 \times 5\) matrix. Report the matrices and your conclusions.

Consider the growth of a lilac bush. The state of this lilac bush for several years (at yearโ€™s end) is shown in the accompanying sketch. Let n(t) be the number of new branches (grown in the year t) and a(t) the number of old branches. In the sketch, the new branches are represented by shorter lines. Each old branch will grow two new branches in the following year. We assume that no branches ever die.

(a) Find the matrix A such that [nt+1at+1]=A[ntat]

(b) Verify that [11]and [2-1] are eigenvectors of A. Find the associated eigenvalues.

(c) Find closed formulas for n(t) and a(t).

Consider an invertible n ร— n matrix A such that the zero state is a stable equilibrium of the dynamical system xโ†’(t+1)=ATxโ†’(t)What can you say about the stability of the systems.

xโ†’(t+1)=ATxโ†’(t)

For the Matrices A find real closed formulas for the trajectory xโ†’(t+1)=Axโ†’(t)wherexโ†’(0)=[01]A=[2-332]

Let \(A{\bf{ = }}\left( {\begin{aligned}{*{20}{c}}{{a_{{\bf{11}}}}}&{{a_{{\bf{12}}}}}\\{{a_{{\bf{21}}}}}&{{a_{{\bf{22}}}}}\end{aligned}} \right)\). Recall from Exercise \({\bf{25}}\) in Section \({\bf{5}}{\bf{.4}}\) that \({\rm{tr}}\;A\) (the trace of \(A\)) is the sum of the diagonal entries in \(A\). Show that the characteristic polynomial of \(A\) is \({\lambda ^2} - \left( {{\rm{tr}}A} \right)\lambda + \det A\). Then show that the eigenvalues of a \({\bf{2 \times 2}}\) matrix \(A\) are both real if and only if \(\det A \le {\left( {\frac{{{\rm{tr}}A}}{2}} \right)^2}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free