Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

M] In Exercises 19 and 20, find (a) the largest eigenvalue and (b) the eigenvalue closest to zero. In each case, set x0=(1,0,0,0) and carry out approximations until the approximating sequence seems accurate to four decimal places. Include the approximate eigenvector.

19.A=[1078775658610975910]

Short Answer

Expert verified
  1. The largest eigenvalue is30.288685.

An estimate for the eigenvalue to four decimal places is 0.01015 and the corresponding eigenvector is [โˆ’0.6039721โˆ’0.2511350.148953].

Step by step solution

01

Write the function to compute the power matrices

(a)

function[x,lambda]=powermat(A,x0,nit)

x=x0;

Forn=1:nit

xnew=Aโˆ—x

lambda=norm(xnew,inf)/norm(x,inf);

fprintf(โ€ฒn=%4dlambda=%gx=%g%g%gโˆ–nโ€ฒ,n,lambda,xโ€ฒ);

x=xnew;endx=x/norm(x);%normalisexfprintf(โ€ฒn=%4dnormalisedx=%g%g%gโˆ–nโ€ฒ,n,xโ€ฒ);

02

Find the middle eigenvalue

(b)

Enter the MatrixBin MATLAB:

>>A=[10787;7565;86109;75910]

Enter thex0in MATLAB:

>>x0=[1000]โ€ฒ

Now find the eigenvector.

>>powermat(A,x0,7)

Construct the data in the table shown below:

k

0

1

2

3

4

xk

[1000]

[1.7.8.7]

[.988679.7094341.932075]

[.961467.6914911.942201]

[.958115.6892611.943578]

Axk

[10787]

[26.218.826.524.7]

[29.006020.867530.289228.5863]

[29.006020.867530.289228.7887]

[29.050520.898730.320528.6097]

ฮผk

10

26.5

30.5547

30.3205

30.2927

k

5

6

7

xk

[.957691.6889781.9433755]

[.957637.6889421.943778]

[.957630.6889381.943781]

Axk

[29.006020.867530.289228.5863]

[29.005420.867130.288728.5859]

[29.005320.867030.288728.5859]

ฮผk

30.2892

30.2887

30.2887

The value of ฮผ6=30.2887=ฮผ1 , the largest eigenvalue is 30.288685.

03

Write the function of MATLAB

function[v,lambda]=IPM(B,tol)

tic;

A=inv(B);

n=size(A,1);

v=rand(n,1);

v=v/norm(v);

res=1;

while(rse>tol)

W=Aโˆ—v;

lambda=max(abs(W));

V=W/lamda;

res=norm(Aโˆ—vโˆ’lambdaโˆ—v);

toc

end

04

Find the eigenvector

Enter the MatrixBin MATLAB:

>>A=[10787;7565;86109;75910]

Now find the Eigenvalue.

>>IPM(B,tol)

Construct the data in the table shown below:

k

0

1

2

3

4

xk

[1000]

[โˆ’.609756.7โˆ’.243902.146341]

[โˆ’.6040071โˆ’.251051.148899]

[โˆ’.6039731โˆ’.251134.148953]

[โˆ’.6039721โˆ’.251135.148953]

Axk

[25โˆ’4110โˆ’6]

[โˆ’59.561098.6098โˆ’24.756114.6829]

[โˆ’59.504198.5211โˆ’24.742014.6750]

[โˆ’59.504498.5217โˆ’24.742314.6751]

[โˆ’59.504498.5217โˆ’24.742314.6751]

ฮผk

โˆ’41

98.6098

98.5211

98.5217

98.5217

vk

โˆ’.0243902

โˆ’.0101410

โˆ’.0101501

โˆ’.0101500

โˆ’.0101500

Thus, an estimate for the eigenvalue to five decimal places is0.01015and the corresponding eigenvector is[โˆ’0.6039721โˆ’0.2511350.148953].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free