The formula in example 1 is shown below:
\(\left( {\begin{aligned}{ {20}{c}}{{x_1}^\prime \left( t \right)}\\{{x_2}^\prime \left( t \right)}\end{aligned}} \right) = \left( {\begin{aligned}{ {20}{c}}{ - \left( {\frac{1}{{{R_1}}} + \frac{1}{{{R_2}}}} \right){C_1}}&{\frac{1}{{\left( {{R_2}{C_1}} \right)}}}\\{\frac{1}{{\left( {{R_2}{C_2}} \right)}}}&{ - \frac{1}{{\left( {{R_2}{C_2}} \right)}}}\end{aligned}} \right)\left( {\begin{aligned}{ {20}{c}}{{x_1}\left( t \right)}\\{{x_2}\left( t \right)}\end{aligned}} \right)\)
Substitute \({R_1} = \frac{1}{5},{R_2} = \frac{1}{3},{C_1} = 4,\) and \({C_2} = 3\) into the above formula to obtain the matrix \(A\) as shown below:
\(\begin{aligned}{c}A = \left( {\begin{aligned}{ {20}{c}}{ - \left( {\frac{1}{{\frac{1}{5}}} + \frac{1}{{\frac{1}{3}}}} \right)}&{\frac{1}{{\frac{1}{3} \cdot 4}}}\\{\frac{1}{{\frac{1}{3} \cdot 3}}}&{ - \frac{1}{{\frac{1}{3} \cdot 3}}}\end{aligned}} \right)\\ = \left( {\begin{aligned}{ {20}{c}}{ - 2}&{\frac{3}{4}}\\1&{ - 1}\end{aligned}} \right)\end{aligned}\)
Use the MATLAB code to compute the eigenvalues of the matrix \(A\) as shown below:
\(\begin{aligned}{l} > > {\mathop{\rm A}\nolimits} = \left( { - 2\,\,\,\,\frac{3}{4};\,\,1\,\,\,\,1} \right)\\ > > {\mathop{\rm ev}\nolimits} = {\mathop{\rm eig}\nolimits} \left( {\mathop{\rm A}\nolimits} \right)\end{aligned}\)
\({\mathop{\rm ev}\nolimits} = \left( {\begin{aligned}{ {20}{c}}{ - 0.5000}\\{ - 2.5000}\end{aligned}} \right)\)
Thus, the eigenvalues of \(A\) are \({\lambda _1} = - .5\) and \({\lambda _2} = - 2.5\).
Use the MATLAB code to compute the eigenvector of the matrix A as shown below:
\( > > {\mathop{\rm nulbasis}\nolimits} \left( {{\mathop{\rm A}\nolimits} - {\mathop{\rm ev}\nolimits} \left( 1 \right) {\mathop{\rm eye}\nolimits} \left( 2 \right)} \right)\)
\(\left( {\begin{aligned}{ {20}{c}}{1.0000}\\{2.0000}\end{aligned}} \right)\). Therefore, \({{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{ {20}{c}}1\\2\end{aligned}} \right)\).
\( > > {\mathop{\rm nulbasis}\nolimits} \left( {{\mathop{\rm A}\nolimits} - {\mathop{\rm ev}\nolimits} \left( 2 \right) {\mathop{\rm eye}\nolimits} \left( 2 \right)} \right)\)
\(\left( {\begin{aligned}{ {20}{c}}{ - 3.0000}\\{2.0000}\end{aligned}} \right)\). Therefore, \({{\mathop{\rm v}\nolimits} _2} = \left( {\begin{aligned}{ {20}{c}}{ - 3}\\2\end{aligned}} \right)\).