Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(A = \left( {\begin{aligned}{*{20}{c}}{.4}&{ - .3}\\{.4}&{1.2}\end{aligned}} \right)\). Explain why \({A^k}\) approaches \(\left( {\begin{aligned}{*{20}{c}}{ - .5}&{ - .75}\\1&{1.5}\end{aligned}} \right)\) as \(k \to \infty \).

Short Answer

Expert verified

This implies that \(\mathop {\lim }\limits_{k \to \infty } {A^k} \to \left( {\begin{aligned}{*{20}{c}}{ - .5}&{ - .75}\\1&{1.5}\end{aligned}} \right)\).

Step by step solution

01

Step 1: Find the characteristic polynomial

Consider the matrices\(A = \left( {\begin{aligned}{*{20}{c}}{.4}&{ - .3}\\{.4}&{1.2}\end{aligned}} \right)\).

\(\begin{aligned}{c}\det \left( {A - \lambda I} \right) &= \det \left( {\begin{aligned}{*{20}{c}}{.4 - \lambda }&{ - .3}\\{.4}&{1.2 - \lambda }\end{aligned}} \right)\\ &= \left( {.4 - \lambda } \right)\left( {1.2 - \lambda } \right) + 1.2\\ &= {\lambda ^2} - 1.6\lambda + .6\\ &= \left( {\lambda - 1} \right)\left( {\lambda - .6} \right)\end{aligned}\)

Thus, the eigenvalues are \(1\) and \(0.6\).

02

Find the Eigenvector for \(\lambda  = {\bf{1}}\)

\(\begin{aligned}{c}\left( {A - \lambda I} \right) &= \left( {\begin{aligned}{*{20}{c}}{ - .6}&{ - .3}\\{.4}&{.2}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}2&1\\2&1\end{aligned}} \right)\;\left\{ {{R_1} \to \frac{1}{{ - 3}}{R_1},\;{R_2} \to \frac{1}{2}{R_2}} \right\}\\ &= \left( {\begin{aligned}{*{20}{c}}2&1\\0&0\end{aligned}} \right)\;\left\{ {{R_1} \to {R_2} - {R_1}} \right\}\end{aligned}\)

The general solution is as shown below:

\(\left( {\begin{aligned}{*{20}{c}}{{x_1}}\\{{x_2}}\end{aligned}} \right) = {x_1}\left( {\begin{aligned}{*{20}{c}}1\\{ - 2}\end{aligned}} \right)\)

Therefore, the eigenvector for \(\lambda = 1\) is \({v_1} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right)\).

03

Find the Eigenvector for \(\lambda  = {\bf{0}}{\bf{.6}}\)

\(\begin{aligned}{c}\left( {A - .6I} \right) &= \left( {\begin{aligned}{*{20}{c}}{ - .2}&{ - .3}\\{.4}&{.6}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}{ - .2}&{ - .3}\\{.2}&{.3}\end{aligned}} \right)\;\left\{ {{R_2} \to \frac{1}{2}{R_2}} \right\}\\ &= \left( {\begin{aligned}{*{20}{c}}2&3\\0&0\end{aligned}} \right)\;\left\{ {{R_2} \to {R_2} + {R_1},{R_1} \to \frac{1}{{ - .1}}{R_1}} \right\}\end{aligned}\)

The general solution is as shown below:

\(\left( {\begin{aligned}{*{20}{c}}{{x_1}}\\{{x_2}}\end{aligned}} \right) = {x_1}\left( {\begin{aligned}{*{20}{c}}1\\{ - \frac{2}{3}}\end{aligned}} \right)\)

Therefore, the eigenvector for \(\lambda = - 3\) is \({v_2} = \left( {\begin{aligned}{*{20}{c}}{ - 3}\\2\end{aligned}} \right)\).

04

Find the matrix \(P\)

The matrix\(P\)is formed by eigenvectors,

\(P = \left( {\begin{aligned}{*{20}{c}}{ - 1}&{ - 3}\\2&2\end{aligned}} \right)\)

Now find the inverse of the matrix\(P\).

\(\begin{aligned}{c}{P^{ - 1}} = \frac{1}{{\left( { - 1} \right)\left( 2 \right) - \left( { - 3} \right)\left( 2 \right)}}\left( {\begin{aligned}{*{20}{c}}2&3\\{ - 2}&{ - 1}\end{aligned}} \right)\\ = \frac{1}{4}\left( {\begin{aligned}{*{20}{c}}2&3\\{ - 2}&{ - 1}\end{aligned}} \right)\end{aligned}\)

Therefore, matrix\(A\)is:

\(A = \left( {\begin{aligned}{*{20}{c}}{ - 1}&{ - 3}\\2&2\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&0\\0&{.6}\end{aligned}} \right)\frac{1}{4}\left( {\begin{aligned}{*{20}{c}}2&3\\{ - 2}&{ - 1}\end{aligned}} \right)\)

05

Find the matrix \({A^k}\)

\(\begin{aligned}{c}{A^k} &= \frac{1}{4}\left( {\begin{aligned}{*{20}{c}}{ - 1}&{ - 3}\\2&2\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{{1^k}}&0\\0&{{{.6}^k}}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}2&3\\{ - 2}&{ - 1}\end{aligned}} \right)\\ &= \frac{1}{4}\left( {\begin{aligned}{*{20}{c}}{ - 1}&{ - 3}\\2&2\end{aligned}} \right)\left( {\left( {\begin{aligned}{*{20}{c}}{{1^k}}&0\\0&{{{.6}^k}}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}2&3\\{ - 2}&{ - 1}\end{aligned}} \right)} \right)\\ &= \frac{1}{4}\left( {\begin{aligned}{*{20}{c}}{ - 1}&{ - 3}\\2&2\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}2&3\\{ - 2{{\left( {.6} \right)}^k}}&{ - {{\left( {.6} \right)}^k}}\end{aligned}} \right)\\ &= \mathop {\lim }\limits_{k \to \infty } \frac{1}{4}\left( {\begin{aligned}{*{20}{c}}{ - 2 + 6{{\left( {.6} \right)}^k}}&{ - 3 + 3{{\left( {.6} \right)}^k}}\\{4 - 4{{\left( {.6} \right)}^k}}&{6 - 2{{\left( {.6} \right)}^k}}\end{aligned}} \right)\\ &= \frac{1}{4}\left( {\begin{aligned}{*{20}{c}}{ - 2}&{ - 3}\\4&6\end{aligned}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}{ - .5}&{ - .75}\\1&{1.5}\end{aligned}} \right)\end{aligned}\)

Thus, \(\mathop {\lim }\limits_{k \to \infty } {A^k} \to \left( {\begin{aligned}{*{20}{c}}{ - .5}&{ - .75}\\1&{1.5}\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let\(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2},{{\bf{b}}_3}} \right\}\) be a basis for a vector space\(V\). Find \(T\left( {3{{\bf{b}}_1} - 4{{\bf{b}}_2}} \right)\) when \(T\) isa linear transformation from \(V\) to \(V\) whose matrix relative to \(B\) is

\({\left( T \right)_B} = \left( {\begin{aligned}0&{}&{ - 6}&{}&1\\0&{}&5&{}&{ - 1}\\1&{}&{ - 2}&{}&7\end{aligned}} \right)\)

Question: In Exercises 21 and 22, \(A\) and \(B\) are \(n \times n\) matrices. Mark each statement True or False. Justify each answer.

  1. The determinant of \(A\) is the product of the diagonal entries in \(A\).
  2. An elementary row operation on \(A\) does not change the determinant.
  3. \(\left( {\det A} \right)\left( {\det B} \right) = \det AB\)
  4. If \(\lambda + 5\) is a factor of the characteristic polynomial of \(A\), then 5 is an eigenvalue of \(A\).

Define \(T:{{\rm P}_2} \to {\mathbb{R}^3}\) by \(T\left( {\bf{p}} \right) = \left( {\begin{aligned}{{\bf{p}}\left( { - 1} \right)}\\{{\bf{p}}\left( 0 \right)}\\{{\bf{p}}\left( 1 \right)}\end{aligned}} \right)\).

  1. Find the image under\(T\)of\({\bf{p}}\left( t \right) = 5 + 3t\).
  2. Show that \(T\) is a linear transformation.
  3. Find the matrix for \(T\) relative to the basis \(\left\{ {1,t,{t^2}} \right\}\)for \({{\rm P}_2}\)and the standard basis for \({\mathbb{R}^3}\).

Question 20: Use a property of determinants to show that \(A\) and \({A^T}\) have the same characteristic polynomial.

Consider an invertible n ร— n matrix A such that the zero state is a stable equilibrium of the dynamical system xโ†’(t+1)=Axโ†’(t)What can you say about the stability of the systems

xโ†’(t+1)=-Axโ†’(t)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free