Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(M) Let \(A\) be as in Exercise 9. Use the inverse power method with \({{\bf{x}}_{\bf{0}}}{\bf{ = }}\left( {{\bf{1,0,0}}} \right)\) to estimate the eigenvalue of \(A\) near \(\alpha {\bf{ = - 1}}{\bf{.4}}\), with an accuracy to four decimal places.

Short Answer

Expert verified

The middle eigenvalue is \( - 1.4244\).

Step by step solution

01

Write the function of MATLAB

Consider \(A = \left( {\begin{aligned}{{20}{c}}8&0&{12}\\1&{ - 2}&1\\0&3&0\end{aligned}} \right)\), \({{\bf{x}}_0} = \left( {\begin{aligned}{{20}{c}}1\\0\\0\end{aligned}} \right)\)

Now estimate the middle eigenvalue of the matrix \(A\) near about \( - 1.4\).

Write the required function of MATLAB

\({\rm{function}}\left( {{\rm{v,lambda}}} \right){\rm{ = IPM}}\left( {{\rm{B,tol}}} \right)\)

tic;

\({\rm{A}} = {\rm{inv}}\left( {\rm{B}} \right){\rm{;}}\)

\({\rm{n}} = {\rm{size}}\left( {{\rm{A}},1} \right);\)

\({\rm{v}} = {\rm{rand}}\left( {{\rm{n}},1} \right);\)

\({\rm{v}} = {\rm{v}}/{\rm{norm}}\left( {\rm{v}} \right);\)

\({\rm{res}} = 1;\)

\({\rm{while}}\left( {{\rm{rse}} > {\rm{tol}}} \right)\)

\({\rm{W}} = {\rm{A}}*{\rm{v}};\)

\({\rm{lambda}} = {\rm{max}}\left( {{\rm{abs}}\left( {\rm{W}} \right)} \right);\)

\({\rm{V}} = {\rm{W}}/{\rm{lamda}};\)

\({\rm{res}} = {\rm{norm}}\left( {{\rm{A}}*{\rm{v}} - {\rm{lambda}}*{\rm{v}}} \right);\)

toc

end

02

Find the middle eigenvalue

Enter the Matrix\(B\)in MATLAB:

\(B = \left( {\begin{aligned}{ {20}{c}}{8\;2\;12;}&{1\; - 2\;1;}&{0\;3\;0}\end{aligned}} \right)\)

Enter the\({x_0}\)in MATLAB:

\({x_0} = \left( {\begin{aligned}{ {20}{c}}1&0&0\end{aligned}} \right)'\)

Now find the eigenvector.

\({\rm{IPM}}\left( {{\rm{B,tol}}} \right)\)

Construct the data in the table shown below:

\(k\)

\(0\)

\(1\)

\(2\)

\(3\)

\(4\)

\({{\bf{x}}_k}\)

\(\left( {\begin{aligned}{ {20}{c}}1\\0\\0\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}1\\{.3646}\\{ - .7813}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}1\\{.3734}\\{ - .7854}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}1\\{.3729}\\{ - .7854}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}1\\{.3734}\\{ - .7854}\end{aligned}} \right)\)

\({{\bf{y}}_k}\)

\(\left( {\begin{aligned}{ {20}{c}}{40}\\{14.5833}\\{ - 31.25}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{ - 38.125}\\{ - 14.2361}\\{29.9479}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{ - 41.1134}\\{ - 15.3300}\\{32.2888}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{ - 40.9243}\\{ - 15.2608}\\{32.1407}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{ - 40.9358}\\{ - 15.2650}\\{32.1497}\end{aligned}} \right)\)

\({\mu _k}\)

\(40\)

\( - 38.125\)

\( - 41.1134\)

\( - 40.9243\)

\( - 40.9358\)

\({v_k}\)

\( - 1.375\)

\( - 1.42623\)

\( - 1.42432\)

\( - 1.42444\)

\( - 1.42443\)

Thus, the middle eigenvalue is \( - 1.4244\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

3. \(\left[ {\begin{array}{*{20}{c}}3&-2\\1&-1\end{array}} \right]\)

(M)Use a matrix program to diagonalize

\(A = \left( {\begin{aligned}{*{20}{c}}{ - 3}&{ - 2}&0\\{14}&7&{ - 1}\\{ - 6}&{ - 3}&1\end{aligned}} \right)\)

If possible. Use the eigenvalue command to create the diagonal matrix \(D\). If the program has a command that produces eigenvectors, use it to create an invertible matrix \(P\). Then compute \(AP - PD\) and \(PD{P^{{\bf{ - 1}}}}\). Discuss your results.

Question: Construct a random integer-valued \(4 \times 4\) matrix \(A\).

  1. Reduce \(A\) to echelon form \(U\) with no row scaling, and use \(U\) in formula (1) (before Example 2) to compute \(\det A\). (If \(A\) happens to be singular, start over with a new random matrix.)
  2. Compute the eigenvalues of \(A\) and the product of these eigenvalues (as accurately as possible).
  3. List the matrix \(A\), and, to four decimal places, list the pivots in \(U\) and the eigenvalues of \(A\). Compute \(\det A\) with your matrix program, and compare it with the products you found in (a) and (b).

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

7. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{6}}&{{\bf{ - 1}}}\end{array}} \right)\)

[M]Repeat Exercise 25 for \[A{\bf{ = }}\left[ {\begin{array}{*{20}{c}}{{\bf{ - 8}}}&{\bf{5}}&{{\bf{ - 2}}}&{\bf{0}}\\{{\bf{ - 5}}}&{\bf{2}}&{\bf{1}}&{{\bf{ - 2}}}\\{{\bf{10}}}&{{\bf{ - 8}}}&{\bf{6}}&{{\bf{ - 3}}}\\{\bf{3}}&{{\bf{ - 2}}}&{\bf{1}}&{\bf{0}}\end{array}} \right]\].

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free