Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 9-18, construct the general solution of \(x' = Ax\) involving complex eigenfunctions and then obtain the general real solution. Describe the shapes of typical trajectories.

17. (M) \(A = \left( {\begin{aligned}{ {20}{c}}{30}&{64}&{23}\\{ - 11}&{ - 23}&{ - 9}\\6&{15}&4\end{aligned}} \right)\)

Short Answer

Expert verified

The general complex solution of \(x' = Ax\) is \(x\left( t \right) = {c_1}\left( {\begin{aligned}{ {20}{c}}{23 - 34{\mathop{\rm i}\nolimits} }\\{ - 9 + 14{\mathop{\rm i}\nolimits} }\\3\end{aligned}} \right){e^{\left( {5 + 2i} \right)t}} + {c_2}\left( {\begin{aligned}{ {20}{c}}{23 + 34{\mathop{\rm i}\nolimits} }\\{ - 9 - 14{\mathop{\rm i}\nolimits} }\\3\end{aligned}} \right){e^{\left( {5 - 2i} \right)t}} + {c_3}\left( {\begin{aligned}{ {20}{c}}{ - 3}\\1\\1\end{aligned}} \right){e^t}\). The real general solution is of the form

\(x\left( t \right) = {c_1}\left( {\begin{aligned}{ {20}{c}}{23\cos 2t + 34\sin 2t}\\{ - 9\cos 2t - 14\sin 2t}\\3\end{aligned}} \right){e^{5t}} + {c_2}\left( {\begin{aligned}{ {20}{c}}{23\sin 2t - 34\cos 2t}\\{ - 9\sin 2t + 14\cos 2t}\\3\end{aligned}} \right){e^{5t}} + {c_3}\left( {\begin{aligned}{ {20}{c}}{ - 3}\\1\\1\end{aligned}} \right){e^t}\). It is observed that the origin is a repellor since all eigenvalue is positive in their real parts. Every trajectory spirals away from its origin.

Step by step solution

01

Determine the eigenvalues and eigenvector of the matrix

The given matrix is \(A = \left( {\begin{aligned}{ {20}{c}}{30}&{64}&{23}\\{ - 11}&{ - 23}&{ - 9}\\6&{15}&4\end{aligned}} \right)\).

Use the MATLAB code to compute the eigenvalues of the matrix \(A\) as shown below:

\(\begin{aligned}{l} > > {\mathop{\rm A}\nolimits} = \left( {30\,\,\,64\,\,\,23\,;\, - 11\,\,\, - 23\,\,\, - 9;\,6\,\,\,15\,\,\,4} \right)\\ > > {\mathop{\rm ev}\nolimits} = {\mathop{\rm eig}\nolimits} \left( {\mathop{\rm A}\nolimits} \right)\end{aligned}\)

\({\mathop{\rm ev}\nolimits} = \left( {\begin{aligned}{ {20}{c}}{5.0000}& + &{2.0000{\mathop{\rm i}\nolimits} }\\{5.0000}& - &{2.0000{\mathop{\rm i}\nolimits} }\\{1.0000}&{}&{}\end{aligned}} \right)\)

Use the MATLAB code to compute the eigenvector of the matrix A as shown below:

\( > > {\mathop{\rm nulbasis}\nolimits} \left( {{\mathop{\rm A}\nolimits} - {\mathop{\rm ev}\nolimits} \left( 1 \right) {\mathop{\rm eye}\nolimits} \left( 3 \right)} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{7.6667}& - &{11.3333{\mathop{\rm i}\nolimits} }\\{ - 3.0000}& + &{4.6667{\mathop{\rm i}\nolimits} }\\{1.0000}&{}&{}\end{aligned}} \right)\). Therefore, \({{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{ {20}{c}}{23 - 34{\mathop{\rm i}\nolimits} }\\{ - 9 + 14{\mathop{\rm i}\nolimits} }\\3\end{aligned}} \right)\).

\( > > {\mathop{\rm nulbasis}\nolimits} \left( {{\mathop{\rm A}\nolimits} - {\mathop{\rm ev}\nolimits} \left( 2 \right) {\mathop{\rm eye}\nolimits} \left( 3 \right)} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{7.6667}& + &{11.3333{\mathop{\rm i}\nolimits} }\\{ - 3.0000}& - &{4.6667{\mathop{\rm i}\nolimits} }\\{1.0000}&{}&{}\end{aligned}} \right)\). Therefore, \({{\mathop{\rm v}\nolimits} _2} = \left( {\begin{aligned}{ {20}{c}}{23 + 34{\mathop{\rm i}\nolimits} }\\{ - 9 - 14{\mathop{\rm i}\nolimits} }\\3\end{aligned}} \right)\).

\( > > {\mathop{\rm nulbasis}\nolimits} \left( {{\mathop{\rm A}\nolimits} - {\mathop{\rm ev}\nolimits} \left( 3 \right) {\mathop{\rm eye}\nolimits} \left( 3 \right)} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{ - 3.0000}\\{1.0000}\\{1.0000}\end{aligned}} \right)\). Therefore, \({{\mathop{\rm v}\nolimits} _3} = \left( {\begin{aligned}{ {20}{c}}{ - 3}\\1\\1\end{aligned}} \right)\).

02

Construct the general solution of \(x' = Ax\)

Therefore, the general complex solution of \(x' = Ax\) is \(x\left( t \right) = {c_1}\left( {\begin{aligned}{ {20}{c}}{23 - 34{\mathop{\rm i}\nolimits} }\\{ - 9 + 14{\mathop{\rm i}\nolimits} }\\3\end{aligned}} \right){e^{\left( {5 + 2i} \right)t}} + {c_2}\left( {\begin{aligned}{ {20}{c}}{23 + 34{\mathop{\rm i}\nolimits} }\\{ - 9 - 14{\mathop{\rm i}\nolimits} }\\3\end{aligned}} \right){e^{\left( {5 - 2i} \right)t}} + {c_3}\left( {\begin{aligned}{ {20}{c}}{ - 3}\\1\\1\end{aligned}} \right){e^t}\), with \({c_1}\) , and \({c_2}\) are arbitrary complex numbers.

03

Determine the real general solution and describe the shape of the trajectories

Rewrite the first eigenfunction of the matrix as shown below:

\(\left( {\begin{aligned}{ {20}{c}}{23 - 34{\mathop{\rm i}\nolimits} }\\{ - 9 + 14{\mathop{\rm i}\nolimits} }\\3\end{aligned}} \right){e^{5t}}\left( {\cos 2t + i\sin 2t} \right) = \left( {\begin{aligned}{ {20}{c}}{23\cos 2t + 34\sin 2t}\\{ - 9\cos 2t - 14\sin 2t}\\3\end{aligned}} \right){e^{5t}} + i\left( {\begin{aligned}{ {20}{c}}{23\sin 2t - 34\cos 2t}\\{ - 9\sin 2t + 14\cos 2t}\\3\end{aligned}} \right){e^{5t}}\)

Therefore, the real general solution is of the form as shown below:

\(x\left( t \right) = {c_1}\left( {\begin{aligned}{ {20}{c}}{23\cos 2t + 34\sin 2t}\\{ - 9\cos 2t - 14\sin 2t}\\3\end{aligned}} \right){e^{5t}} + {c_2}\left( {\begin{aligned}{ {20}{c}}{23\sin 2t - 34\cos 2t}\\{ - 9\sin 2t + 14\cos 2t}\\3\end{aligned}} \right){e^{5t}} + {c_3}\left( {\begin{aligned}{ {20}{c}}{ - 3}\\1\\1\end{aligned}} \right){e^t}\),

Where \({c_1},{c_2},\) and \({c_2}\) are real numbers.

It is observed that the origin is a repellor since all eigenvalue is positive in their real parts. Every trajectory spirals away from its origin.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose \(A = PD{P^{ - 1}}\), where \(P\) is \(2 \times 2\) and \(D = \left( {\begin{array}{*{20}{l}}2&0\\0&7\end{array}} \right)\)

a. Let \(B = 5I - 3A + {A^2}\). Show that \(B\) is diagonalizable by finding a suitable factorization of \(B\).

b. Given \(p\left( t \right)\) and \(p\left( A \right)\) as in Exercise 5 , show that \(p\left( A \right)\) is diagonalizable.

Show that if \(A\) is diagonalizable, with all eigenvalues less than 1 in magnitude, then \({A^k}\) tends to the zero matrix as \(k \to \infty \). (Hint: Consider \({A^k}x\) where \(x\) represents any one of the columns of \(I\).)

Let\(B = \left\{ {{{\bf{b}}_{\bf{1}}},{{\bf{b}}_{\bf{2}}},{{\bf{b}}_{\bf{3}}}} \right\}\) and \(D = \left\{ {{{\bf{d}}_{\bf{1}}},{{\bf{d}}_{\bf{2}}}} \right\}\) be bases for vector space \(V\) and \(W\), respectively. Let \(T:V \to W\) be a linear transformation with the property that

\(T\left( {{{\bf{b}}_1}} \right) = 3{{\bf{d}}_1} - 5{{\bf{d}}_2}\), \(T\left( {{{\bf{b}}_2}} \right) = - {{\bf{d}}_1} + 6{{\bf{d}}_2}\), \(T\left( {{{\bf{b}}_3}} \right) = 4{{\bf{d}}_2}\)

Find the matrix for \(T\) relative to \(B\), and\(D\).

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

8. \(\left( {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{1}}\\{\bf{0}}&{\bf{5}}\end{array}} \right)\)

Question: Exercises 9-14 require techniques section 3.1. Find the characteristic polynomial of each matrix, using either a cofactor expansion or the special formula for \(3 \times 3\) determinants described prior to Exercise 15-18 in Section 3.1. [Note: Finding the characteristic polynomial of a \(3 \times 3\) matrix is not easy to do with just row operations, because the variable \(\lambda \) is involved.

14. \(\left[ {\begin{array}{*{20}{c}}5&- 2&3\\0&1&0\\6&7&- 2\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free