Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Apply the results of Exercise \({\bf{15}}\) to find the eigenvalues of the matrices \(\left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{2}}&{\bf{2}}\\{\bf{2}}&{\bf{1}}&{\bf{2}}\\{\bf{2}}&{\bf{2}}&{\bf{1}}\end{aligned}} \right)\) and \(\left( {\begin{aligned}{*{20}{c}}{\bf{7}}&{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{7}}&{\bf{3}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{7}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{7}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{7}}\end{aligned}} \right)\).

Short Answer

Expert verified

The eigenvalues for the matrix \(\left( {\begin{aligned}{*{20}{c}}1&2&2\\2&1&2\\2&2&1\end{aligned}} \right)\) is \( - 1\) and \(5\) and the eigenvalues for the matrix \(\left( {\begin{aligned}{*{20}{c}}7&3&3&3&3\\3&7&3&3&3\\3&3&7&3&3\\3&3&3&7&3\\3&3&3&3&7\end{aligned}} \right)\) is \(5\) and \(19\).

Step by step solution

01

Step 1: Write the definition of eigenvalue

Eigenvalue:An eigenvector of \(n \times n\) the matrix \(A\) is a nonzero vector \({\bf{x}}\) such that \(A{\bf{x}} = \lambda {\bf{x}}\) for some scalar \(\lambda \) where scalar \(\lambda \) is called an eigenvalue of \(A\).

02

Step 2: Find the eigenvalues

Assume\(A = \left( {\begin{aligned}{*{20}{c}}1&2&2\\2&1&2\\2&2&1\end{aligned}} \right)\).

From the exercise\(15\), the eigenvalues are \(\lambda = a - b\) and \(\lambda = a + \left( {n - 1} \right)b\).

Therefore,

Put \(a = 1\), \(b = 2\) and \(n = 3\).

\(\begin{aligned}{c}\lambda &= a - b\\ &= 1 - 2\\ &= - 1\end{aligned}\)

\(\begin{aligned}{c}\lambda &= a + \left( {n - 1} \right)b\\ &= 1 + \left( {3 - 1} \right)2\\ &= 5\end{aligned}\)

Thus, eigenvalues for the matrix \(\left( {\begin{aligned}{*{20}{c}}1&2&2\\2&1&2\\2&2&1\end{aligned}} \right)\) are \( - 1\) and \(5\).

03

Step 3: Find the eigenvalues

Assume\(A = \left( {\begin{aligned}{*{20}{c}}7&3&3&3&3\\3&7&3&3&3\\3&3&7&3&3\\3&3&3&7&3\\3&3&3&3&7\end{aligned}} \right)\).

From the exercise \(15\), the eigenvalues are \(\lambda = a - b\) and \(\lambda = a + \left( {n - 1} \right)b\).

Therefore,

Put \(a = 7\), \(b = 3\) and \(n = 5\).

\(\begin{aligned}{c}\lambda &= a - b\\ &= 7 - 3\\ &= 5\end{aligned}\)

\(\begin{aligned}{c}\lambda &= a + \left( {n - 1} \right)b\\ &= 7 + \left( {5 - 1} \right)3\\ &= 19\end{aligned}\)

Thus, the eigenvalues for the matrix \(\left( {\begin{aligned}{*{20}{c}}7&3&3&3&3\\3&7&3&3&3\\3&3&7&3&3\\3&3&3&7&3\\3&3&3&3&7\end{aligned}} \right)\) are \(5\) and \(19\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

19. Write the companion matrix \({C_p}\) for \(p\left( t \right) = {\bf{6}} - {\bf{5}}t + {t^{\bf{2}}}\), and then find the characteristic polynomial of \({C_p}\).

Question: In Exercises \({\bf{1}}\) and \({\bf{2}}\), let \(A = PD{P^{ - {\bf{1}}}}\) and compute \({A^{\bf{4}}}\).

2. \(P{\bf{ = }}\left( {\begin{array}{*{20}{c}}2&{ - 3}\\{ - 3}&5\end{array}} \right)\), \(D{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{0}}&{\frac{{\bf{1}}}{{\bf{2}}}}\end{array}} \right)\)

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

14. \(\left( {\begin{array}{*{20}{c}}4&0&{ - 2}\\2&5&4\\0&0&5\end{array}} \right)\)

For the matrices Afind real closed formulas for the trajectoryx(t+1)=Ax(t)wherex(0)=[01]. Draw a rough sketchA=[1-31.2-2.6]

Question: In Exercises \({\bf{3}}\) and \({\bf{4}}\), use the factorization \(A = PD{P^{ - {\bf{1}}}}\) to compute \({A^k}\) where \(k\) represents an arbitrary positive integer.

3. \(\left( {\begin{array}{*{20}{c}}a&0\\{3\left( {a - b} \right)}&b\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&0\\3&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}a&0\\0&b\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\{ - 3}&1\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free