Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 9-18, construct the general solution of \(x' = Ax\) involving complex eigenfunctions and then obtain the general real solution. Describe the shapes of typical trajectories.

16. (M) \(A = \left( {\begin{aligned}{ {20}{c}}{ - 6}&{11}&{16}\\2&5&{ - 4}\\{ - 4}&{ - 5}&{10}\end{aligned}} \right)\)

Short Answer

Expert verified

The general complex solution of \(x' = Ax\) is \(x\left( t \right) = {c_1}\left( {\begin{aligned}{ {20}{c}}7\\{ - 2}\\3\end{aligned}} \right){e^{4t}} + {c_2}\left( {\begin{aligned}{ {20}{c}}3\\{ - 1}\\1\end{aligned}} \right){e^{3t}} + {c_3}\left( {\begin{aligned}{ {20}{c}}2\\0\\1\end{aligned}} \right){e^{2t}}\). It is observed that the origin is a repellor since every eigenvalue is positive. All trajectories point away from the origin.

Step by step solution

01

Determine the eigenvalues and eigenvector of the matrix

The given matrix is \(A = \left( {\begin{aligned}{ {20}{c}}{ - 6}&{ - 11}&{16}\\2&5&{ - 4}\\{ - 4}&{ - 5}&{10}\end{aligned}} \right)\).

Use the MATLAB code to compute the eigenvalues of the matrix \(A\) as shown below:

\(\begin{aligned}{l} > > {\mathop{\rm A}\nolimits} = \left( { - 6\,\,\, - 11\,\,\,\,16;\,2\,\,\,\,5\,\,\, - 4;\, - 4\,\,\, - 5\,\,\,10} \right)\\ > > {\mathop{\rm ev}\nolimits} = {\mathop{\rm eig}\nolimits} \left( {\mathop{\rm A}\nolimits} \right)\end{aligned}\)

\({\mathop{\rm ev}\nolimits} = \left( {\begin{aligned}{ {20}{c}}{4.0000}\\{3.0000}\\{2.0000}\end{aligned}} \right)\)

Use the MATLAB code to compute the eigenvector of the matrix A as shown below:

\( > > {\mathop{\rm nulbasis}\nolimits} \left( {{\mathop{\rm A}\nolimits} - {\mathop{\rm ev}\nolimits} \left( 1 \right) {\mathop{\rm eye}\nolimits} \left( 3 \right)} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{2.3333}\\{ - 0.6667}\\{1.0000}\end{aligned}} \right)\). Therefore, \({{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{ {20}{c}}7\\{ - 2}\\3\end{aligned}} \right)\).

\( > > {\mathop{\rm nulbasis}\nolimits} \left( {{\mathop{\rm A}\nolimits} - {\mathop{\rm ev}\nolimits} \left( 2 \right) {\mathop{\rm eye}\nolimits} \left( 3 \right)} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{3.0000}\\{ - 1.0000}\\{1.0000}\end{aligned}} \right)\). Therefore, \({{\mathop{\rm v}\nolimits} _2} = \left( {\begin{aligned}{ {20}{c}}3\\{ - 1}\\1\end{aligned}} \right)\).

\( > > {\mathop{\rm nulbasis}\nolimits} \left( {{\mathop{\rm A}\nolimits} - {\mathop{\rm ev}\nolimits} \left( 3 \right) {\mathop{\rm eye}\nolimits} \left( 3 \right)} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{2.0000}\\{0.0000}\\{1.0000}\end{aligned}} \right)\). Therefore, \({{\mathop{\rm v}\nolimits} _3} = \left( {\begin{aligned}{ {20}{c}}2\\0\\1\end{aligned}} \right)\).

02

Construct the general solution of \(x' = Ax\)

Therefore, the general complex solution of \(x' = Ax\) is \(x\left( t \right) = {c_1}\left( {\begin{aligned}{ {20}{c}}7\\{ - 2}\\3\end{aligned}} \right){e^{4t}} + {c_2}\left( {\begin{aligned}{ {20}{c}}3\\{ - 1}\\1\end{aligned}} \right){e^{3t}} + {c_3}\left( {\begin{aligned}{ {20}{c}}2\\0\\1\end{aligned}} \right){e^{2t}}\), with \({c_1}\) , and \({c_2}\) are arbitrary complex numbers.

03

Describe the shape of the trajectories

It is observed that the origin is a repellor since every eigenvalue is positive. Every trajectory point away from the origin.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Show that if \(A\) and \(B\) are similar, then \(\det A = \det B\).

Question: Is \(\left( {\begin{array}{*{20}{c}}{ - 1 + \sqrt 2 }\\1\end{array}} \right)\) an eigenvalue of \(\left( {\begin{array}{*{20}{c}}2&1\\1&4\end{array}} \right)\)? If so, find the eigenvalue.

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

21. Use mathematical induction to prove that for \(n \ge {\bf{2}}\),\(\begin{aligned}{c}det\left( {{C_p} - \lambda I} \right) = {\left( { - {\bf{1}}} \right)^n}\left( {{a_{\bf{0}}} + {a_{\bf{1}}}\lambda + ... + {a_{n - {\bf{1}}}}{\lambda ^{n - {\bf{1}}}} + {\lambda ^n}} \right)\\ = {\left( { - {\bf{1}}} \right)^n}p\left( \lambda \right)\end{aligned}\)

(Hint: Expanding by cofactors down the first column, show that \(det\left( {{C_p} - \lambda I} \right)\) has the form \(\left( { - \lambda B} \right) + {\left( { - {\bf{1}}} \right)^n}{a_{\bf{0}}}\) where \(B\) is a certain polynomial (by the induction assumption).)

a. Let \(A\) be a diagonalizable \(n \times n\) matrix. Show that if the multiplicity of an eigenvalue \(\lambda \) is \(n\), then \(A = \lambda I\).

b. Use part (a) to show that the matrix \(A =\left({\begin{aligned}{*{20}{l}}3&1\\0&3\end{aligned}}\right)\) is not diagonalizable.

For the matrices A in Exercises 1 through 12, find closed formulas for , where t is an arbitrary positive integer. Follow the strategy outlined in Theorem 7.4.2 and illustrated in Example 2. In Exercises 9 though 12, feel free to use technology.

1.A=1203

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free