Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(J\) be the \(n \times n\) matrix of all \({\bf{1}}\)’s and consider \(A = \left( {a - b} \right)I + bJ\) that is,

\(A = \left( {\begin{aligned}{*{20}{c}}a&b&b&{...}&b\\b&a&b&{...}&b\\b&b&a&{...}&b\\:&:&:&:&:\\b&b&b&{...}&a\end{aligned}} \right)\)

Use the results of Exercise \({\bf{16}}\) in the Supplementary Exercises for Chapter \({\bf{3}}\) to show that the eigenvalues of \(A\) are \(a - b\) and \(a + \left( {n - {\bf{1}}} \right)b\). What are the multiplicities of these eigenvalues?

Short Answer

Expert verified

The eigenvalues are \(\lambda = a - b\) with multiplicity \(n - 1\) and \(\lambda = a + \left( {n - 1} \right)\) with multiplicity \(1\).

Step by step solution

01

Step 1: Write the definition of eigenvalue and eigenvector

Eigenvector and Eigenvalue: An eigenvector of \(n \times n\) matrix \(A\) is a nonzero vector \({\bf{x}}\) such that \(A{\bf{x}} = \lambda {\bf{x}}\) for some scalar \(\lambda \) where scalar \(\lambda \) is called an eigenvalue of \(A\). If there is a nontrivial solution \({\bf{x}}\) of \(A{\bf{x}} = \lambda {\bf{x}}\) then \({\bf{x}}\) is called an eigenvector corresponding to \(\lambda \).

02

Step 2: Show that the eigenvalues of \(A\) are \(a - b\) and \(a + \left( {n - {\bf{1}}} \right)b\) also find the multiplicities of these eigenvalues

The characteristic polynomial of A is shown below:

\(\begin{aligned}{c}\det \left( {A - \lambda I} \right) = \det \left( {\begin{aligned}{*{20}{c}}{a - \lambda }&b&b&{...}&b\\b&{a - \lambda }&b&{...}&b\\b&b&{a - \lambda }&{...}&b\\:&:&:&:&:\\b&b&b&{...}&{a - \lambda }\end{aligned}} \right)\\ = {\left( {a - \lambda - b} \right)^{n - 1}}\left( {a - \lambda + \left( {n - 1} \right)b} \right)\\ = {\left( {a - b - \lambda } \right)^{n - 1}}\left( {a + \left( {n - 1} \right)b - \lambda } \right)\end{aligned}\)

Thus, the eigenvalues are \(\lambda = a - b\) with multiplicity \(n - 1\) and \(\lambda = a + \left( {n - 1} \right)\) with multiplicity \(1\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Assume the mapping\(T:{{\rm P}_2} \to {{\rm P}_{\bf{2}}}\)defined by \(T\left( {{a_0} + {a_1}t + {a_2}{t^2}} \right) = 3{a_0} + \left( {5{a_0} - 2{a_1}} \right)t + \left( {4{a_1} + {a_2}} \right){t^2}\) is linear. Find the matrix representation of\(T\) relative to the bases \(B = \left\{ {1,t,{t^2}} \right\}\).

Question: In Exercises \({\bf{1}}\) and \({\bf{2}}\), let \(A = PD{P^{ - {\bf{1}}}}\) and compute \({A^{\bf{4}}}\).

1. \(P{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{7}}\\{\bf{2}}&{\bf{3}}\end{array}} \right)\), \(D{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{2}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}\end{array}} \right)\)

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

16. \(\left( {\begin{array}{*{20}{c}}{\bf{0}}&{{\bf{ - 4}}}&{{\bf{ - 6}}}\\{{\bf{ - 1}}}&{\bf{0}}&{{\bf{ - 3}}}\\{\bf{1}}&{\bf{2}}&{\bf{5}}\end{array}} \right)\)

19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

23. Let \(p\) be the polynomial in Exercise \({\bf{22}}\), and suppose the equation \(p\left( t \right) = {\bf{0}}\) has distinct roots \({\lambda _{\bf{1}}},{\lambda _{\bf{2}}},{\lambda _{\bf{3}}}\). Let \(V\) be the Vandermonde matrix

\(V{\bf{ = }}\left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{1}}&{\bf{1}}\\{{\lambda _{\bf{1}}}}&{{\lambda _{\bf{2}}}}&{{\lambda _{\bf{3}}}}\\{\lambda _{\bf{1}}^{\bf{2}}}&{\lambda _{\bf{2}}^{\bf{2}}}&{\lambda _{\bf{3}}^{\bf{2}}}\end{aligned}} \right)\)

(The transpose of \(V\) was considered in Supplementary Exercise \({\bf{11}}\) in Chapter \({\bf{2}}\).) Use Exercise \({\bf{22}}\) and a theorem from this chapter to deduce that \(V\) is invertible (but do not compute \({V^{{\bf{ - 1}}}}\)). Then explain why \({V^{{\bf{ - 1}}}}{C_p}V\) is a diagonal matrix.

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

5. \(\left[ {\begin{array}{*{20}{c}}2&1\\-1&4\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free