Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 9–16, find a basis for the eigenspace corresponding to each listed eigenvalue.

14. \(A = \left( {\begin{array}{*{20}{c}}1&0&{ - 1}\\1&{ - 3}&0\\4&{ - 13}&1\end{array}} \right)\), \(\lambda = - 2\)

Short Answer

Expert verified

For \(\lambda = - 2\): \(\left( {\begin{array}{*{20}{c}}{\frac{1}{3}}\\{\frac{1}{3}}\\1\end{array}} \right)\) or \(\left( {\begin{array}{*{20}{c}}1\\1\\3\end{array}} \right)\).

Step by step solution

01

Definitions

Eigenvalue: Let \(\lambda \) is a scaler, \(A\) is an \(n \times n\) matrix and \({\bf{x}}\) is an eigenvector corresponding to \(\lambda \), \(\lambda \) is said to an eigenvalue of the matrix \(A\) if there exists a nontrivial solution \({\bf{x}}\) of \(A{\bf{x}} = \lambda {\bf{x}}\).

Eigenvector: For a \(n \times n\) matrix \(A\), whose eigenvalue is \(\lambda \), the set of a subspace of \({\mathbb{R}^n}\) is known as an eigenspace, where the set of the subspace of is the set of all the solutions of \(\left( {A - \lambda I} \right){\bf{x}} = 0\).

02

Find a basis of eigenspace for \(\lambda  =  - {\bf{2}}\)

The given matrix is \(A = \left( {\begin{array}{*{20}{c}}1&0&{ - 1}\\1&{ - 3}&0\\4&{ - 13}&1\end{array}} \right)\), where \(\lambda = - 2\).

As, \(\lambda = - 2\) are the eigenvalue of the matrix \(A\), so they satisfy the equation \(A{\bf{x}} = \lambda {\bf{x}}\).

For \(\lambda = - 2\), solve \(\left( {A - \lambda I} \right){\bf{x}} = 0\), for which first evaluate \(\left( {A - \lambda I} \right)\).

\(\begin{array}{c}\left( {A + 2I} \right) = \left( {\begin{array}{*{20}{c}}1&0&{ - 1}\\1&{ - 3}&0\\4&{ - 13}&1\end{array}} \right) + 2\left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}1&0&{ - 1}\\1&{ - 3}&0\\4&{ - 13}&1\end{array}} \right) + \left( {\begin{array}{*{20}{c}}2&0&0\\0&2&0\\0&0&2\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}3&0&{ - 1}\\1&{ - 1}&0\\4&{ - 13}&3\end{array}} \right)\end{array}\)

Write the obtained matrix in the form of an augmented matrix, where for \(A{\bf{x}} = 0\), the augmented matrix given by \(\left( {\begin{array}{*{20}{c}}A&0\end{array}} \right)\).

\(\left( {\begin{array}{*{20}{c}}3&0&{ - 1}&0\\1&{ - 1}&0&0\\4&{ - 13}&3&0\end{array}} \right)\)

The obtained matrix is not in a reduced form, so reduce it in row echelon form by applying row operations.

\(\begin{gathered} \hfill \left( {\begin{array}{*{20}{c}} 3&0&{ - 1}&0 \\ 1&{ - 1}&0&0 \\ 4&{ - 13}&3&0 \end{array}} \right)\xrightarrow{{{R_1} \to \frac{{{R_1}}}{3}}}\left( {\begin{array}{*{20}{c}} 1&0&{ - \frac{1}{3}}&0 \\ 1&{ -1}&0&0 \\ 4&{ - 13}&3&0 \end{array}} \right) \\ \hfill \xrightarrow({{R_3} \to {R_3} - 4{R_1}}){{{R_2} \to {R_2} - {R_1}}}\left( {\begin{array}{*{20}{c}} 1&0&{ - \frac{1}{3}}&0 \\ 0&{ - 1}&{\frac{1}{3}}&0 \\ 0&{ - 13}&{\frac{{13}}{3}}&0 \end{array}} \right) \\ \hfill \xrightarrow{{{R_2} \to - {R_2}}}\left( {\begin{array}{*{20}{c}} 1&0&{ - \frac{1}{3}}&0 \\ 0&1&{ - \frac{1}{3}}&0 \\ 0&{ - 13}&{\frac{{13}}{3}}&0 \end{array}} \right) \\ \hfill \xrightarrow{{{R_3} \to {R_3} + 13{R_2}}}\left( {\begin{array}{*{20}{c}} 1&0&{ - \frac{1}{3}}&0 \\ 0&1&{ - \frac{1}{3}}&0 \\ 0&0&0&0 \end{array}} \right) \\ \end{gathered} \)

Write a system of equations corresponding to the obtained matrix.

\(\begin{array}{c}{x_1} - \frac{1}{3}{x_3} = 0\\{x_2} - \frac{1}{3}{x_3} = 0\\{x_3},{\rm{ free variable}}\end{array}\)

As \({x_3}\) is a free variable, let \({x_3} = 1\). Then,

\(\begin{array}{c}{x_1} = \frac{1}{3}\\{x_2} = \frac{1}{3}\\{x_3} = 1\end{array}\)

So, the general solution is given as:

\(\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = {x_2}\left( {\begin{array}{*{20}{c}}{\frac{1}{3}}\\{\frac{1}{3}}\\1\end{array}} \right)\)

So, \(\left( {\begin{array}{*{20}{c}}{\frac{1}{3}}\\{\frac{1}{3}}\\1\end{array}} \right)\) or \(\left( {\begin{array}{*{20}{c}}1\\1\\3\end{array}} \right)\) is the basis for the eigenspace for \(\lambda = - 2\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

20. Let \(p\left( t \right){\bf{ = }}\left( {t{\bf{ - 2}}} \right)\left( {t{\bf{ - 3}}} \right)\left( {t{\bf{ - 4}}} \right){\bf{ = - 24 + 26}}t{\bf{ - 9}}{t^{\bf{2}}}{\bf{ + }}{t^{\bf{3}}}\). Write the companion matrix for \(p\left( t \right)\), and use techniques from chapter \({\bf{3}}\) to find the characteristic polynomial.

Question: Let \(A = \left( {\begin{array}{*{20}{c}}{ - 6}&{28}&{21}\\4&{ - 15}&{ - 12}\\{ - 8}&a&{25}\end{array}} \right)\). For each value of \(a\) in the set \(\left\{ {32,31.9,31.8,32.1,32.2} \right\}\), compute the characteristic polynomial of \(A\) and the eigenvalues. In each case, create a graph of the characteristic polynomial \(p\left( t \right) = \det \left( {A - tI} \right)\) for \(0 \le t \le 3\). If possible, construct all graphs on one coordinate system. Describe how the graphs reveal the changes in the eigenvalues of \(a\) changes.

In Exercises 9–16, find a basis for the eigenspace corresponding to each listed eigenvalue.

10. \(A = \left( {\begin{array}{*{20}{c}}{10}&{ - 9}\\4&{ - 2}\end{array}} \right)\), \(\lambda = 4\)

Question: Let \(A = \left( {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right)\). Use formula (1) for a determinant (given before Example 2) to show that \(\det A = ad - bc\). Consider two cases: \(a \ne 0\) and \(a = 0\).

(M)The MATLAB command roots\(\left( p \right)\) computes the roots of the polynomial equation \(p\left( t \right) = {\bf{0}}\). Read a MATLAB manual, and then describe the basic idea behind the algorithm for the roots command.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free