Find the determinant of\(V - \lambda I\).
\(\begin{aligned}{c}\det \left( {\begin{aligned}{*{20}{c}}{5 - \lambda }&{ - 2}\\{ - 4}&{3 - \lambda }\end{aligned}} \right) &= \left( {5 - \lambda } \right)\left( {3 - \lambda } \right) - 8\\ &= 15 - 5\lambda - 3\lambda + {\lambda ^2} - 8\\ &= {\lambda ^2} - 8\lambda + 7\\ &= \left( {\lambda - 1} \right)\left( {\lambda - 7} \right)\end{aligned}\)
On multiplication we get the characteristic polynomial of \(A\).
\(A = \left( {\lambda - 1} \right)\left( {\lambda - 7} \right)\left( {\lambda - 3} \right)\)
Thus, the eigenvalues of \(A\) are \(1\), \(7\), \(3\).