Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 9–16, find a basis for the eigenspace corresponding to each listed eigenvalue.

13. \(A = \left( {\begin{array}{*{20}{c}}4&0&1\\{ - 2}&1&0\\{ - 2}&0&1\end{array}} \right)\), \(\lambda = 1,2,3\)

Short Answer

Expert verified

For \(\lambda = 1\): \(\left( {\begin{array}{*{20}{c}}0\\1\\0\end{array}} \right)\).

For \(\lambda = 2\): \(\left( {\begin{array}{*{20}{c}}{ - 1}\\2\\2\end{array}} \right)\).

For \(\lambda = 3\): \(\left( {\begin{array}{*{20}{c}}{ - 1}\\1\\1\end{array}} \right)\).

Step by step solution

01

Definitions

Eigenvalue: Let \(\lambda \) is a scaler, \(A\) is an \(n \times n\) matrix and \({\bf{x}}\) is an eigenvector corresponding to \(\lambda \), \(\lambda \) is said to an eigenvalue of the matrix \(A\) if there exists a nontrivial solution \({\bf{x}}\) of \(A{\bf{x}} = \lambda {\bf{x}}\).

Eigenvector: For a \(n \times n\) matrix \(A\), whose eigenvalue is \(\lambda \), the set of a subspace of \({\mathbb{R}^n}\) is known as an eigenspace, where the set of the subspace of is the set of all the solutions of \(\left( {A - \lambda I} \right){\bf{x}} = 0\).

02

Find a basis of eigenspace for \(\lambda  = 1\)

The given matrix is \(A = \left( {\begin{array}{*{20}{c}}4&0&1\\{ - 2}&1&0\\{ - 2}&0&1\end{array}} \right)\), where \(\lambda = 1,2,3\).

As, \(\lambda = 1,2,3\) are the eigenvalue of the matrix \(A\), so they satisfy the equation \(A{\bf{x}} = \lambda {\bf{x}}\).

For \(\lambda = 1\), solve \(\left( {A - \lambda I} \right){\bf{x}} = 0\), for which first evaluate \(\left( {A - \lambda I} \right)\).

\(\begin{array}{c}\left( {A - 1I} \right) = \left( {\begin{array}{*{20}{c}}4&0&1\\{ - 2}&1&0\\{ - 2}&0&1\end{array}} \right) - 1\left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}4&0&1\\{ - 2}&1&0\\{ - 2}&0&1\end{array}} \right) - \left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}3&0&1\\{ - 2}&0&0\\{ - 2}&0&0\end{array}} \right)\end{array}\)

Write the obtained matrix in the form of an augmented matrix, where for \(A{\bf{x}} = 0\), the augmented matrix given by \(\left( {\begin{array}{*{20}{c}}A&0\end{array}} \right)\).

\(\left( {\begin{array}{*{20}{c}}3&0&1&0\\{ - 2}&0&0&0\\{ - 2}&0&0&0\end{array}} \right)\)

The obtained matrix is hard to reduce further. Write a system of equations corresponding to the obtained matrix.

\(\begin{array}{c}3{x_1} + {x_3} = 0\\ - 2{x_1} = 0\\{x_2},{\rm{ free variable}}\end{array}\)

As \({x_2}\) is a free variable, let \({x_2} = 1\). Then,

\(\begin{array}{c}{x_1} = 0\\{x_2} = 1\\{x_3} = 0\end{array}\)

So, the general solution is given as:

\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = {x_2}\left( {\begin{array}{*{20}{c}}0\\1\\0\end{array}} \right)\\ = {x_2}{e_2}\end{array}\)

So, \({e_2} = \left( {\begin{array}{*{20}{c}}0\\1\\0\end{array}} \right)\) is the basis for the eigenspace for \(\lambda = 1\).

03

Find a basis of eigenspace for \(\lambda  = 2\)

For \(\lambda = 2\), solve \(\left( {A - \lambda I} \right){\bf{x}} = 0\), for which first evaluate \(\left( {A - \lambda I} \right)\).

\(\begin{array}{c}\left( {A - 2I} \right) = \left( {\begin{array}{*{20}{c}}4&0&1\\{ - 2}&1&0\\{ - 2}&0&1\end{array}} \right) - 2\left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}4&0&1\\{ - 2}&1&0\\{ - 2}&0&1\end{array}} \right) - \left( {\begin{array}{*{20}{c}}2&0&0\\0&2&0\\0&0&2\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}2&0&1\\{ - 2}&{ - 1}&0\\{ - 2}&0&{ - 1}\end{array}} \right)\end{array}\)

Write the obtained matrix in the form of an augmented matrix, where for \(A{\bf{x}} = 0\), the augmented matrix given by \(\left( {\begin{array}{*{20}{c}}A&0\end{array}} \right)\).

\(\left( {\begin{array}{*{20}{c}}2&0&1&0\\{ - 2}&{ - 1}&0&0\\{ - 2}&0&{ - 1}&0\end{array}} \right)\)

The obtained matrix is not in a reduced form, so reduce it in row echelon form by applying row operations.

\(\begin{gathered} \hfill \left( {\begin{array}{*{20}{c}} 2&0&1&0 \\ { - 2}&{ - 1}&0&0 \\ { - 2}&0&{ - 1}&0 \end{array}} \right)\xrightarrow{{{R_1} \to \frac{{{R_1}}}{2}}}\left( {\begin{array}{*{20}{c}} 1&0&{\frac{1}{2}}&0 \\ { - 2}&{ -1}&0&0 \\ { - 2}&0&{ - 1}&0 \end{array}} \right) \\ \hfill \xrightarrow({{R_3} \to {R_3} + 2{R_1}}){{{R_2} \to {R_2} + 2{R_1}}}\left( {\begin{array}{*{20}{c}} 1&0&{\frac{1}{2}}&0 \\ 0&{ - 1}&1&0 \\ 0&0&0&0 \end{array}} \right) \\ \hfill \xrightarrow{{{R_2} \to - {R_2}}}\left( {\begin{array}{*{20}{c}} 1&0&{\frac{1}{2}}&0 \\ 0&{ - 1}&1&0 \\ 0&0&0&0 \end{array}} \right) \\ \end{gathered} \)

Write a system of equations corresponding to the obtained matrix.

\(\begin{array}{c}{x_1} + \frac{1}{2}{x_3} = 0\\{x_2} - {x_3} = 0\\{x_3},{\rm{ free variable}}\end{array}\)

As \({x_3}\) is a free variable, let \({x_3} = 1\). Then,

\(\begin{array}{c}{x_1} = - \frac{1}{2}\\{x_2} = 1\\{x_3} = 1\end{array}\)

So, the general solution is given as:

\(\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = {x_2}\left( {\begin{array}{*{20}{c}}{ - \frac{1}{2}}\\1\\1\end{array}} \right)\)

So, \(\left( {\begin{array}{*{20}{c}}{ - \frac{1}{2}}\\1\\1\end{array}} \right)\) or \(\left( {\begin{array}{*{20}{c}}{ - 1}\\2\\2\end{array}} \right)\) is the basis for the eigenspace for \(\lambda = 2\).

04

Find a basis of eigenspace for \(\lambda  = 3\)

For \(\lambda = 3\), solve \(\left( {A - \lambda I} \right){\bf{x}} = 0\), for which first evaluate \(\left( {A - \lambda I} \right)\).

\(\begin{array}{c}\left( {A - 3I} \right) = \left( {\begin{array}{*{20}{c}}4&0&1\\{ - 2}&1&0\\{ - 2}&0&1\end{array}} \right) - 3\left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}4&0&1\\{ - 2}&1&0\\{ - 2}&0&1\end{array}} \right) - \left( {\begin{array}{*{20}{c}}3&0&0\\0&3&0\\0&0&3\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}1&0&1\\{ - 2}&{ - 2}&0\\{ - 2}&0&{ - 2}\end{array}} \right)\end{array}\)

Write the obtained matrix in the form of an augmented matrix, where for \(A{\bf{x}} = 0\), the augmented matrix given by \(\left( {\begin{array}{*{20}{c}}A&0\end{array}} \right)\).

\(\left( {\begin{array}{*{20}{c}}1&0&1&0\\{ - 2}&{ - 2}&0&0\\{ - 2}&0&{ - 2}&0\end{array}} \right)\)

The obtained matrix is not in a reduced form, so reduce it in row echelon form by applying row operations.

\(\begin{gathered} \hfill \left( {\begin{array}{*{20}{c}} 1&0&1&0 \\ { - 2}&{ - 2}&0&0 \\ { - 2}&0&{ - 2}&0 \end{array}} \right)\xrightarrow({{R_3} \to {R_3} + 2{R_1}}){{{R_2} \to {R_2} + 2{R_1}}}\left( {\begin{array}{*{20}{c}} 1&0&1&0 \\ 0&{ - 2}&2&0 \\ 0&0&0&0 \end{array}} \right) \\ \hfill \xrightarrow({}){{{R_2} \to - \frac{{{R_2}}}{2}}}\left( {\begin{array}{*{20}{c}} 1&0&1&0 \\ 0&1&{ - 1}&0 \\ 0&0&0&0 \end{array}} \right) \\ \end{gathered} \)

Write a system of equations corresponding to the obtained matrix.

\(\begin{array}{c}{x_1} + {x_3} = 0\\{x_2} + {x_3} = 0\\{x_3},{\rm{ free variable}}\end{array}\)

As \({x_3}\) is a free variable, let \({x_3} = 1\). Then,

\(\begin{array}{c}{x_1} = - 1\\{x_2} = 1\\{x_3} = 1\end{array}\)

So, the general solution is given as:

\(\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = {x_2}\left( {\begin{array}{*{20}{c}}{ - 1}\\1\\1\end{array}} \right)\)

So, \(\left( {\begin{array}{*{20}{c}}{ - 1}\\1\\1\end{array}} \right)\) is the basis for the eigenspace for \(\lambda = 3\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

12. \(\left( {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{2}}&{\bf{2}}\\{\bf{2}}&{\bf{4}}&{\bf{2}}\\{\bf{2}}&{\bf{2}}&{\bf{4}}\end{array}} \right)\)

Suppose \({\bf{x}}\) is an eigenvector of \(A\) corresponding to an eigenvalue \(\lambda \).

a. Show that \(x\) is an eigenvector of \(5I - A\). What is the corresponding eigenvalue?

b. Show that \(x\) is an eigenvector of \(5I - 3A + {A^2}\). What is the corresponding eigenvalue?

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

6. \(\left[ {\begin{array}{*{20}{c}}3&- 4\\4&8\end{array}} \right]\)

Consider an invertible n × n matrix A such that the zero state is a stable equilibrium of the dynamical system x(t+1)=ATx(t)What can you say about the stability of the systems.

x(t+1)=ATx(t)

Question: Exercises 9-14 require techniques section 3.1. Find the characteristic polynomial of each matrix, using either a cofactor expansion or the special formula for \(3 \times 3\) determinants described prior to Exercise 15-18 in Section 3.1. [Note: Finding the characteristic polynomial of a \(3 \times 3\) matrix is not easy to do with just row operations, because the variable \(\lambda \) is involved.

12. \(\left[ {\begin{array}{*{20}{c}}- 1&0&1\\- 3&4&1\\0&0&2\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free