Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Another estimate can be made for an eigenvalue when an approximate eigenvector is available. Observe that if \(A{\bf{x}} = \lambda {\bf{x}}\), then \({{\bf{x}}^T}A{\bf{x}} = {{\bf{x}}^T}\left( {\lambda {\bf{x}}} \right) = \lambda \left( {{{\bf{x}}^T}{\bf{x}}} \right)\) and the Rayleigh quotient

\(R\left( {\bf{x}} \right){\bf{ = }}\frac{{{{\bf{x}}^T}A{\bf{x}}}}{{{{\bf{x}}^T}{\bf{x}}}}\)

Equals \(\lambda \).If \({\bf{x}}\) is close to an eigenvector for \(\lambda \), then this quotient is close to \(\lambda \). When \(A\) is a symmetric matrix \({A^T} = A\) the Rayleigh quotient \(R\left( {{{\bf{x}}_k}} \right) = \frac{{{\bf{x}}_k^TA{{\bf{x}}_k}}}{{{\bf{x}}_k^T{{\bf{x}}_k}}}\)will have roughly twice as many digits of accuracy as the scaling factor \({\mu _k}\) in the power method. Verify this increased accuracy in Exercises 11 and 12 by computing \({\mu _k}\) and \(R\left( {{{\bf{x}}_k}} \right)\) for \(k{\bf{ = 1,}}....{\bf{,4}}\).

11. \(A{\bf{ = }}\left( {\begin{aligned}{ {20}{c}}{\bf{5}}&{\bf{2}}\\{\bf{2}}&{\bf{2}}\end{aligned}} \right)\), \({{\bf{x}}_{\bf{0}}}{\bf{ = }}\left( {\begin{aligned}{ {20}{c}}{\bf{1}}\\{\bf{0}}\end{aligned}} \right)\)

Short Answer

Expert verified

As the actual eigenvalue is \(6\) and the values of \({\mu _k}\) and \(R\left( {{{\bf{x}}_k}} \right)\) in the table are estimates the eigenvalue more accurately than \({\mu _k}\).

Step by step solution

01

Write the function to compute the power matrices

\({\rm{function}}\left( {x,{\rm{lambda}}} \right) = {\rm{powermat}}(A,{x_0},{\rm{nit)}}\)

\(x = {x_0}\);

For\(n = 1:{\rm{nit}}\)

\({\rm{xnew}} = A {\rm{x}}\)

\({\rm{lambda}} = {\rm{norm(xnew,inf)/norm(x,inf);}}\)

\({\rm{fprintf('n}} = {\rm{\% 4d}}\;{\rm{lambda}} = {\rm{\% gx}} = {\rm{\% g\% g\% g\backslash n',n,lambda,x');}}\)

\({\rm{x}} = {\rm{xnew;}}\;{\rm{end x}} = {\rm{x/norm(x);\% normalise x fprintf('n}} = {\rm{\% 4d normalised x}} = {\rm{\% g\% g\% g\backslash n',n,x');}}\)

02

Estimate the data

Enter the Matrix\(A\)in MATLAB:

\( > > \;A = \left( {5\;2;\;2\;2} \right)\)

Enter the\({{\rm{x}}_0}\)in MATLAB:

\( > > {{\rm{x}}_0} = \left( {1\;\;\;\;0} \right)';\)

Now compute the power matrices.

\( > > {\rm{powermat(}}A,{{\rm{x}}_0},5)\)

Construct the data in the table shown below:

\(k\)

\(0\)

\(0\)

\(0\)

\(0\)

\(0\)

\({{\bf{x}}_k}\)

\(\left( {\begin{aligned}{ {20}{c}}1\\0\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}1\\{.4}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}1\\{.4828}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}1\\{.4971}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}1\\{.4995}\end{aligned}} \right)\)

\(A{{\bf{x}}_k}\)

\(\left( {\begin{aligned}{ {20}{c}}5\\2\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{5.8}\\{2.8}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{5.9655}\\{2.9990}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{5.9942}\\{2.9942}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{5.9990}\\{2.9990}\end{aligned}} \right)\)

\({\mu _k}\)

\(5\)

\(5.8\)

\(5.9655\)

\(5.9942\)

\(5.9990\)

\(R\left( {{{\bf{x}}_k}} \right)\)

\(5\)

\(5.9655\)

\(5.9990\)

\(5.99997\)

\(5.9999993\)

As the actual eigenvalue is \(6\) and the values of \({\mu _k}\) and \(R\left( {{{\bf{x}}_k}} \right)\) in the table are estimates the eigenvalue more accurately than \({\mu _k}\).

Hence Proved.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free