Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that if \(A\) is diagonalizable, with all eigenvalues less than 1 in magnitude, then \({A^k}\) tends to the zero matrix as \(k \to \infty \). (Hint: Consider \({A^k}x\) where \(x\) represents any one of the columns of \(I\).)

Short Answer

Expert verified

Since all eigenvalues are in magnitude less than one, \({\lambda ^k} \to 0\) as \(k\) increases, so \(D\) becomes zero matrix.

Step by step solution

01

Definition of zero matrix and Diagonal Matrix

In mathematics, particularly linear algebra, a zero matrix or null matrix is a matrix all of whose entries are zero.

It also serves as the additive identity of the additive group of matrices, and is denoted by the symbol or followed by subscripts corresponding to the dimension of the matrix as the context sees fit.

A diagonal matrix is matrix where all nondiagonal entries are zero.

02

Showing if \(A\) is diagonalizable, with all eigenvalues less than 1 in magnitude then \({A^k}\) tends to Zero Matrix

Since\(A\)is diagonalizable,\(A = PD{P^{ - 1}}\)with some invertible matrix\(P\)and diagonal matrix\(D\)with eigenvalues on its diagonal.

Then we have,

\(\begin{aligned}{c}{A^2} &= AA\\ &= PD{P^{ - 1}}PD{P^{ - 1}}\\ &= P{D^2}{P^{ - 1}}\end{aligned}\)

\(\begin{aligned}{c}{A^3} &= {A^2}A\\ &= P{D^2}{P^{ - 1}}PD{P^{ - 1}}\\ &= P{D^3}{P^{ - 1}}\end{aligned}\)

This implies that \({A^k} = P{D^k}{P^{ - 1}}\).

When raising the diagonal matrix to power\(k\), it just raises every element on the diagonal to power\(k\).

Since all eigenvalues are in magnitude less than one, \({\lambda ^k} \to 0\) as \(k\) increases, so \(D\) becomes zero matrix.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For the matrices A in Exercises 1 through 12, find closed formulas for , where t is an arbitrary positive integer. Follow the strategy outlined in Theorem 7.4.2 and illustrated in Example 2. In Exercises 9 though 12, feel free to use technology.

1.A=1203

Let\(G = \left( {\begin{aligned}{*{20}{c}}A&X\\{\bf{0}}&B\end{aligned}} \right)\). Use formula\(\left( {\bf{1}} \right)\)for the determinant in section\({\bf{5}}{\bf{.2}}\)to explain why\(\det G = \left( {\det A} \right)\left( {\det B} \right)\). From this, deduce that the characteristic polynomial of\(G\)is the product of the characteristic polynomials of\(A\)and\(B\).

Consider an invertible n × n matrix A such that the zero state is a stable equilibrium of the dynamical system x(t+1)=Ax(t)What can you say about the stability of the systems

x(t+1)=-Ax(t)

A common misconception is that if \(A\) has a strictly dominant eigenvalue, then, for any sufficiently large value of \(k\), the vector \({A^k}{\bf{x}}\) is approximately equal to an eigenvector of \(A\). For the three matrices below, study what happens to \({A^k}{\bf{x}}\) when \({\bf{x = }}\left( {{\bf{.5,}}{\bf{.5}}} \right)\), and try to draw general conclusions (for a \({\bf{2 \times 2}}\) matrix).

a. \(A{\bf{ = }}\left( {\begin{aligned}{ {20}{c}}{{\bf{.8}}}&{\bf{0}}\\{\bf{0}}&{{\bf{.2}}}\end{aligned}} \right)\) b. \(A{\bf{ = }}\left( {\begin{aligned}{ {20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{0}}&{{\bf{.8}}}\end{aligned}} \right)\) c. \(A{\bf{ = }}\left( {\begin{aligned}{ {20}{c}}{\bf{8}}&{\bf{0}}\\{\bf{0}}&{\bf{2}}\end{aligned}} \right)\)

Question: Let \(A = \left( {\begin{array}{*{20}{c}}{.5}&{.2}&{.3}\\{.3}&{.8}&{.3}\\{.2}&0&{.4}\end{array}} \right)\), \({{\rm{v}}_1} = \left( {\begin{array}{*{20}{c}}{.3}\\{.6}\\{.1}\end{array}} \right)\), \({{\rm{v}}_2} = \left( {\begin{array}{*{20}{c}}1\\{ - 3}\\2\end{array}} \right)\), \({{\rm{v}}_3} = \left( {\begin{array}{*{20}{c}}{ - 1}\\0\\1\end{array}} \right)\) and \({\rm{w}} = \left( {\begin{array}{*{20}{c}}1\\1\\1\end{array}} \right)\).

  1. Show that \({{\rm{v}}_1}\), \({{\rm{v}}_2}\), and \({{\rm{v}}_3}\) are eigenvectors of \(A\). (Note: \(A\) is the stochastic matrix studied in Example 3 of Section 4.9.)
  2. Let \({{\rm{x}}_0}\) be any vector in \({\mathbb{R}^3}\) with non-negative entries whose sum is 1. (In section 4.9, \({{\rm{x}}_0}\) was called a probability vector.) Explain why there are constants \({c_1}\), \({c_2}\), and \({c_3}\) such that \({{\rm{x}}_0} = {c_1}{{\rm{v}}_1} + {c_2}{{\rm{v}}_2} + {c_3}{{\rm{v}}_3}\). Compute \({{\rm{w}}^T}{{\rm{x}}_0}\), and deduce that \({c_1} = 1\).
  3. For \(k = 1,2, \ldots ,\) define \({{\rm{x}}_k} = {A^k}{{\rm{x}}_0}\), with \({{\rm{x}}_0}\) as in part (b). Show that \({{\rm{x}}_k} \to {{\rm{v}}_1}\) as \(k\) increases.
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free