Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the determinants in Exercises 5-10 by row reduction to echelon form.

\(\left| {\begin{array}{*{20}{c}}{\bf{1}}&{ - {\bf{1}}}&{ - {\bf{3}}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{5}}&{\bf{4}}\\{ - {\bf{1}}}&{\bf{0}}&{\bf{5}}&{\bf{3}}\\{\bf{3}}&{ - {\bf{3}}}&{ - {\bf{2}}}&{\bf{3}}\end{array}} \right|\)

Short Answer

Expert verified

The value of the determinant is \( - 28\).

Step by step solution

01

Apply the row operation on the determinant

Apply the row operation to reduce the determinant into the echelon form.

At row 4, multiply row 1 by 3 and subtract it from row 4, i.e., \({R_4} \to {R_4} - 3{R_1}\).

\[\left| {\begin{array}{*{20}{c}}1&{ - 1}&{ - 3}&0\\0&1&5&4\\{ - 1}&0&5&3\\0&0&7&3\end{array}} \right|\]

At row 3, add rows 1 and 3, i.e., \({R_3} \to {R_3} + {R_1}\).

\[\left| {\begin{array}{*{20}{c}}1&{ - 1}&{ - 3}&0\\0&1&5&4\\0&{ - 1}&2&3\\0&0&7&3\end{array}} \right|\]

02

Apply the row operation on the determinant

At row 3, add rows 2 and 3, i.e., \({R_3} \to {R_3} + {R_2}\).

\[\left| {\begin{array}{*{20}{c}}1&{ - 1}&{ - 3}&0\\0&1&5&4\\0&0&7&7\\0&0&7&3\end{array}} \right|\]

03

Apply the row operation on the determinant

At row 4, subtract row 3 from row 4, i.e., \({R_4} \to {R_4} - {R_3}\).

\[\left| {\begin{array}{*{20}{c}}1&{ - 1}&{ - 3}&0\\0&1&5&4\\0&0&7&7\\0&0&0&{ - 4}\end{array}} \right|\]

04

Find the value of the determinant

For a triangular matrix, the determinant is the product of diagonal elements.

\(\begin{array}{c}\det = \left( 1 \right)\left( 1 \right)\left( 7 \right)\left( { - 4} \right)\\ = - 28\end{array}\)

So, the value of the determinant is \( - 28\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Compute the determinants of the elementary matrices given in Exercise 25-30.

30. \(\left[ {\begin{aligned}{*{20}{c}}0&1&0\\1&0&0\\0&0&1\end{aligned}} \right]\).

Let \(u = \left[ {\begin{aligned}{*{20}{c}}a\\b\end{aligned}} \right]\), and \(v = \left[ {\begin{aligned}{*{20}{c}}c\\{\bf{0}}\end{aligned}} \right]\), where a, b, and c are positive integers (for simplicity). Compute the area of the parallelogram determined by u, v, \({\bf{u}} + {\bf{v}}\), and 0, and compute the determinant of \(\left[ {\begin{aligned}{*{20}{c}}{\bf{u}}&{\bf{v}}\end{aligned}} \right]\), and \[\left[ {\begin{aligned}{*{20}{c}}{\bf{v}}&{\bf{u}}\end{aligned}} \right]\]. Draw a picture and explain what you find.

Find the determinant in Exercise 16, where \[\left| {\begin{array}{*{20}{c}}{\bf{a}}&{\bf{b}}&{\bf{c}}\\{\bf{d}}&{\bf{e}}&{\bf{f}}\\{\bf{g}}&{\bf{h}}&{\bf{i}}\end{array}} \right| = {\bf{7}}\].

16. \[\left| {\begin{array}{*{20}{c}}{\bf{a}}&{\bf{b}}&{\bf{c}}\\{{\bf{5d}}}&{{\bf{5e}}}&{{\bf{5f}}}\\{\bf{g}}&{\bf{h}}&{\bf{i}}\end{array}} \right|\]

Question: In Exercise 12, compute the adjugate of the given matrix, and then use Theorem 8 to give the inverse of the matrix.

12. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{1}}&{\bf{3}}\\{ - {\bf{2}}}&{\bf{2}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}&{\bf{1}}\end{array}} \right)\)

The expansion of a \({\bf{3}} \times {\bf{3}}\) determinant can be remembered by the following device. Write a second type of the first two columns to the right of the matrix, and compute the determinant by multiplying entries on six diagonals.

Add the downward diagonal products and subtract the upward products. Use this method to compute the determinants in Exercises 15-18. Warning: This trick does not generalize in any reasonable way to \({\bf{4}} \times {\bf{4}}\) or larger matrices.

15. \(\left| {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}&{\bf{4}}\\{\bf{2}}&{\bf{3}}&{\bf{2}}\\{\bf{0}}&{\bf{5}}&{ - {\bf{2}}}\end{array}} \right|\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free