Let\(A\)be aninvertible\(n \times n\) matrix. Based on Cramer’s rule,for any b in \({\mathbb{R}^n}\), the unique solution \({\mathop{\rm x}\nolimits} \) of \(A{\mathop{\rm x}\nolimits} = {\mathop{\rm b}\nolimits} \) has entries given by
\({x_i} = \frac{{\det {A_i}\left( b \right)}}{{\det A}},\,\,\,\,i = 1,2,...,n\).
Use Cramer’s rule to compute the solution of the system as shown below:
\(\begin{array}{c}{{\mathop{\rm x}\nolimits} _1} = \frac{{\det {A_1}\left( b \right)}}{{\det A}}\\ = \frac{1}{4}\\{{\mathop{\rm x}\nolimits} _2} = \frac{{\det {A_2}\left( b \right)}}{{\det A}}\\ = \frac{{11}}{4}\end{array}\)
\(\begin{array}{c}{{\mathop{\rm x}\nolimits} _3} = \frac{{\det {A_3}\left( b \right)}}{{\det A}}\\ = \frac{3}{8}\end{array}\)
Thus, the solutions of the systems are \({x_1} = \frac{1}{4},{x_2} = \frac{{11}}{4},{x_3} = \frac{3}{8}\).