Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Use Cramer’s rule to compute the solutions of the systems in Exercises1-6.

5. \(\begin{array}{c}{x_1} + {x_2} = 3\\ - 3{x_1} + 2{x_3} = 0\\{x_2} - 2{x_3} = 2\end{array}\)

Short Answer

Expert verified

The solutions of the systems are \({x_1} = \frac{1}{4},{x_2} = \frac{{11}}{4},{x_3} = \frac{3}{8}\).

Step by step solution

01

State the matrices \({A_1}\left( b \right)\) and \({A_2}\left( b \right)\)

For any\(n \times n\)matrix A and any b in \({\mathbb{R}^n}\), let \({A_i}\left( b \right)\) be the matrix obtained from A by replacing the column \(i\)by vector\({\mathop{\rm b}\nolimits} \).

\({A_i}\left( {\mathop{\rm b}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}{{a_1}}& \cdots &{\mathop{\rm b}\nolimits} & \cdots &{{a_n}}\end{array}} \right)\)

The system of equations is equivalent to\(A{\mathop{\rm x}\nolimits} = {\mathop{\rm b}\nolimits} \), where\({\mathop{\rm A}\nolimits} = \left( {\begin{array}{*{20}{c}}1&1&0\\{ - 3}&0&2\\0&1&{ - 2}\end{array}} \right)\)and\({\mathop{\rm b}\nolimits} = \left( {\begin{array}{*{20}{c}}3\\0\\2\end{array}} \right)\).

Matrices\({A_1}\left( b \right),{A_2}\left( b \right)\), and\({A_3}\left( b \right)\)are shown below:

\({A_1}\left( b \right) = \left( {\begin{array}{*{20}{c}}3&1&0\\0&0&2\\2&1&{ - 2}\end{array}} \right),{A_2}\left( b \right) = \left( {\begin{array}{*{20}{c}}1&3&0\\{ - 3}&0&2\\0&2&{ - 2}\end{array}} \right),{A_3}\left( b \right) = \left( {\begin{array}{*{20}{c}}1&1&3\\{ - 3}&0&0\\0&1&2\end{array}} \right)\)

02

Compute the determinants of the matrices

The determinant of matrix\(A\)is shown below:

\(\begin{array}{c}\det A = \left| {\begin{array}{*{20}{c}}1&1&0\\{ - 3}&0&2\\0&1&{ - 2}\end{array}} \right|\\ = 1\left( {0 - 2} \right) - 1\left( {6 - 0} \right) + 0\\ = - 2 - 6 + 0\\ = - 8\end{array}\)

The determinant of matrix\({A_1}\left( b \right)\)is shown below:

\(\begin{array}{c}\det {A_1}\left( b \right) = \left| {\begin{array}{*{20}{c}}3&1&0\\0&0&2\\2&1&{ - 2}\end{array}} \right|\\ = 3\left( {0 - 2} \right) - 1\left( {0 - 4} \right) + 0\\ = - 6 + 4\\ = - 2\end{array}\)

The determinant of matrix\({A_2}\left( b \right)\)is shown below:

\(\begin{array}{c}\det {A_2}\left( b \right) = \left| {\begin{array}{*{20}{c}}1&3&0\\{ - 3}&0&2\\0&2&{ - 2}\end{array}} \right|\\ = 1\left( {0 - 4} \right) - 3\left( {6 - 0} \right) + 0\\ = - 4 - 18\\ = - 22\end{array}\)

The determinant of matrix\({A_3}\left( b \right)\)is shown below:

\(\begin{array}{c}\det {A_3}\left( b \right) = \left| {\begin{array}{*{20}{c}}1&1&3\\{ - 3}&0&0\\0&1&2\end{array}} \right|\\ = 1\left( {0 - 0} \right) - 1\left( { - 6 - 0} \right) + 3\left( { - 3 - 0} \right)\\ = 6 - 9\\ = - 3\end{array}\)

Since \(\det A = - 8\), the system has a unique solution.

03

Compute the solution of the system

Let\(A\)be aninvertible\(n \times n\) matrix. Based on Cramer’s rule,for any b in \({\mathbb{R}^n}\), the unique solution \({\mathop{\rm x}\nolimits} \) of \(A{\mathop{\rm x}\nolimits} = {\mathop{\rm b}\nolimits} \) has entries given by

\({x_i} = \frac{{\det {A_i}\left( b \right)}}{{\det A}},\,\,\,\,i = 1,2,...,n\).

Use Cramer’s rule to compute the solution of the system as shown below:

\(\begin{array}{c}{{\mathop{\rm x}\nolimits} _1} = \frac{{\det {A_1}\left( b \right)}}{{\det A}}\\ = \frac{1}{4}\\{{\mathop{\rm x}\nolimits} _2} = \frac{{\det {A_2}\left( b \right)}}{{\det A}}\\ = \frac{{11}}{4}\end{array}\)

\(\begin{array}{c}{{\mathop{\rm x}\nolimits} _3} = \frac{{\det {A_3}\left( b \right)}}{{\det A}}\\ = \frac{3}{8}\end{array}\)

Thus, the solutions of the systems are \({x_1} = \frac{1}{4},{x_2} = \frac{{11}}{4},{x_3} = \frac{3}{8}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 39 and 40, \(A\) is an \(n \times n\) matrix. Mark each statement True or False. Justify each answer.

39.

a. An \(n \times n\) determinant is defined by determinants of \(\left( {n - 1} \right) \times \left( {n - 1} \right)\) submatrices.

b. The \(\left( {i,j} \right)\)-cofactor of a matrix \(A\) is the matrix \({A_{ij}}\) obtained by deleting from A its \(i{\mathop{\rm th}\nolimits} \) row and \[j{\mathop{\rm th}\nolimits} \]column.

In Exercise 33-36, verify that \(\det EA = \left( {\det E} \right)\left( {\det A} \right)\)where E is the elementary matrix shown and \(A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\).

35. \(\left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]\)

Find the determinant in Exercise 17, where \[\left| {\begin{aligned}{*{20}{c}}{\bf{a}}&{\bf{b}}&{\bf{c}}\\{\bf{d}}&{\bf{e}}&{\bf{f}}\\{\bf{g}}&{\bf{h}}&{\bf{i}}\end{aligned}} \right| = {\bf{7}}\].

17. \[\left| {\begin{aligned}{*{20}{c}}{{\bf{a}} + {\bf{d}}}&{{\bf{b}} + {\bf{e}}}&{{\bf{c}} + {\bf{f}}}\\{\bf{d}}&{\bf{e}}&{\bf{f}}\\{\bf{g}}&{\bf{h}}&{\bf{i}}\end{aligned}} \right|\]

Question: In Exercise 16, compute the adjugate of the given matrix, and then use Theorem 8 to give the inverse of the matrix.

16. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{2}}&{\bf{4}}\\{\bf{0}}&{ - {\bf{3}}}&{\bf{1}}\\{\bf{0}}&{\bf{0}}&{ - {\bf{2}}}\end{array}} \right)\)

Use Exercise 25-28 to answer the questions in Exercises 31 ad 32. Give reasons for your answers.

32. What is the determinant of an elementary scaling matrix with k on the diagonal?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free