Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Use Cramer’s rule to compute the solutions of the systems in Exercises1-6.

4. \(\begin{array}{c} - 5{x_1} + 2{x_2} = 9\\3{x_1} - {x_2} = - 4\end{array}\)

Short Answer

Expert verified

The solutions of the systems are \({x_1} = 1,{x_2} = 7\).

Step by step solution

01

State matrices \({A_1}\left( b \right)\) and \({A_2}\left( b \right)\)

For any\(n \times n\)matrix A and any b in \({\mathbb{R}^n}\), let \({A_i}\left( b \right)\) be the matrix obtained from A by replacing column \(i\)by vector\({\mathop{\rm b}\nolimits} \).

\({A_i}\left( {\mathop{\rm b}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}{{a_1}}& \cdots &{\mathop{\rm b}\nolimits} & \cdots &{{a_n}}\end{array}} \right)\)

The system of equations is equivalent to\(A{\mathop{\rm x}\nolimits} = {\mathop{\rm b}\nolimits} \), where\({\mathop{\rm A}\nolimits} = \left( {\begin{array}{*{20}{c}}{ - 5}&2\\3&{ - 1}\end{array}} \right)\)and\({\mathop{\rm b}\nolimits} = \left( {\begin{array}{*{20}{c}}9\\{ - 4}\end{array}} \right)\).

Matrices\({A_1}\left( b \right)\)and\({A_2}\left( b \right)\)are shown below:

\({A_1}\left( b \right) = \left( {\begin{array}{*{20}{c}}9&2\\{ - 4}&{ - 1}\end{array}} \right),{A_2}\left( b \right) = \left( {\begin{array}{*{20}{c}}{ - 5}&9\\3&{ - 4}\end{array}} \right)\)

02

Compute the determinants of the matrices

The determinant of matrix\(A\)is shown below:

\(\begin{array}{c}\det A = \left| {\begin{array}{*{20}{c}}{ - 5}&2\\3&{ - 1}\end{array}} \right|\\ = 5 - 6\\ = - 1\end{array}\)

The determinant of matrix\({A_1}\left( b \right)\)is shown below:

\(\begin{array}{c}\det {A_1}\left( b \right) = \left| {\begin{array}{*{20}{c}}9&2\\{ - 4}&{ - 1}\end{array}} \right|\\ = - 9 + 8\\ = - 1\end{array}\)

The determinant of matrix\({A_2}\left( b \right)\)is shown below:

\(\begin{array}{c}\det {A_2}\left( b \right) = \left| {\begin{array}{*{20}{c}}{ - 5}&9\\3&{ - 4}\end{array}} \right|\\ = 20 - 27\\ = - 7\end{array}\)

Since \(\det A = - 1\), the system has a unique solution.

03

Compute the solution of the system

Let\(A\)be aninvertible\(n \times n\) matrix. Based on Cramer’s rule,for any b in\({\mathbb{R}^n}\), theunique solution \({\mathop{\rm x}\nolimits} \)of\(A{\mathop{\rm x}\nolimits} = {\mathop{\rm b}\nolimits} \)has entries given by

\({x_i} = \frac{{\det {A_i}\left( b \right)}}{{\det A}},\,\,\,\,i = 1,2,...,n\).

Use Cramer’s rule to compute the solution of the system as shown below:

\(\begin{array}{c}{{\mathop{\rm x}\nolimits} _1} = \frac{{\det {A_1}\left( b \right)}}{{\det A}}\\ = 1\\{{\mathop{\rm x}\nolimits} _2} = \frac{{\det {A_2}\left( b \right)}}{{\det A}}\\ = 7\end{array}\)

Thus, the solutions of the systems are \({x_1} = 1,{x_2} = 7\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 21–23, use determinants to find out if the matrix is invertible.

22. \(\left( {\begin{aligned}{*{20}{c}}5&1&{ - 1}\\1&{ - 3}&{ - 2}\\0&5&3\end{aligned}} \right)\)

Question: In Exercise 8, determine the values of the parameter s for which the system has a unique solution, and describe the solution.

8.

\(\begin{array}{c}{\bf{3}}s{x_{\bf{1}}} + {\bf{5}}{x_{\bf{2}}} = {\bf{3}}\\12{x_{\bf{1}}} + {\bf{5}}s{x_{\bf{2}}} = {\bf{2}}\end{array}\)

Compute the determinant in Exercise 10 by cofactor expansions. At each step, choose a row or column that involves the least amount of computation.

10. \(\left| {\begin{array}{*{20}{c}}{\bf{1}}&{ - {\bf{2}}}&{\bf{5}}&{\bf{2}}\\{\bf{0}}&{\bf{0}}&{\bf{3}}&{\bf{0}}\\{\bf{2}}&{ - {\bf{4}}}&{ - {\bf{3}}}&{\bf{5}}\\{\bf{2}}&{\bf{0}}&{\bf{3}}&{\bf{5}}\end{array}} \right|\)

Question: 17. Show that if A is \({\bf{2}} \times {\bf{2}}\), then Theorem 8 gives the same formula for \({A^{ - {\bf{1}}}}\) as that given by theorem 4 in Section 2.2.

Let \(u = \left[ {\begin{aligned}{*{20}{c}}a\\b\end{aligned}} \right]\), and \(v = \left[ {\begin{aligned}{*{20}{c}}c\\{\bf{0}}\end{aligned}} \right]\), where a, b, and c are positive integers (for simplicity). Compute the area of the parallelogram determined by u, v, \({\bf{u}} + {\bf{v}}\), and 0, and compute the determinant of \(\left[ {\begin{aligned}{*{20}{c}}{\bf{u}}&{\bf{v}}\end{aligned}} \right]\), and \[\left[ {\begin{aligned}{*{20}{c}}{\bf{v}}&{\bf{u}}\end{aligned}} \right]\]. Draw a picture and explain what you find.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free