Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Construct a random \({\bf{4}} \times {\bf{4}}\) matrix A with integer entries between \( - {\bf{9}}\) and 9, and compare det A with det\({A^T}\), \(det\left( { - A} \right)\), \(det\left( {{\bf{2}}A} \right)\), and \(det\left( {{\bf{10}}A} \right)\). Repeat with two other random \({\bf{4}} \times {\bf{4}}\) integer matrices, and make conjectures about how these determinants are related. (Refer to Exercise 36 in Section 2.1.) Then check your conjectures with several random \({\bf{5}} \times {\bf{5}}\) and \({\bf{6}} \times {\bf{6}}\) integer matrices. Modify your conjectures, if necessary, and report your results.

Short Answer

Expert verified

For an\(n \times n\)matrix,\(\det \left( {kA} \right) = {k^n}\det \left( A \right)\), where k is an integer.

Step by step solution

01

Write the MATLAB commands

To create a random\(m \times m\)matrix A with integer entries between\( - a\)and\(a\), the MATLAB command is

\( > > A = randi\left( {\left( { - a,a} \right),m,m} \right)\).

To compute thedeterminant of matrix A, the MATLAB command is

\( > > det\left( A \right)\).

02

Find the determinant of the matrix

Use the MATLAB command\(A = randi\left( {\left( { - {\bf{9}},9} \right),4,4} \right)\)to create a random matrix of the order\(4 \times 4\)between the integers\( - 9\)and 9.

\(A = \left( {\begin{aligned}{*{20}{c}}2&4&2&3\\5&5&9&6\\5&6&4&1\\2&4&0&6\end{aligned}} \right)\)

Compute the determinant of matrix A by using the MATLAB command shown below:

\( > > {\rm{d}} = \det \left( {\rm{A}} \right)\)

The output obtained is\({\rm{d}} = 232\).

Therefore, the determinant is\(\det \left( A \right) = 232\).

The transpose of the matrix is shown below:

\({A^T} = \left( {\begin{aligned}{*{20}{c}}2&5&5&2\\4&5&6&4\\2&9&4&0\\3&6&1&6\end{aligned}} \right)\)

Obtain the determinant of the transpose of matrix A as shown below:

\( > > {\rm{d}} = \det \left( {{{\rm{A}}^T}} \right)\)

So,\(\det \left( {{{\rm{A}}^T}} \right) = 232\).

Obtain the\( - A\)matrix as shown below:

\( - A = \left( {\begin{aligned}{*{20}{c}}{ - 2}&{ - 4}&{ - 2}&{ - 3}\\{ - 5}&{ - 5}&{ - 9}&{ - 6}\\{ - 5}&{ - 6}&{ - 4}&{ - 1}\\{ - 2}&{ - 4}&0&{ - 6}\end{aligned}} \right)\)

Obtain the determinant of the matrix\( - A\)as shown below:

\( > > {\rm{d}} = \det \left( { - {\rm{A}}} \right)\)

So,\(\det \left( { - {\rm{A}}} \right) = 232\).

Obtain the\(2A\)matrix as shown below:

\(2A = \left( {\begin{aligned}{*{20}{c}}4&8&4&6\\{10}&{10}&{18}&{12}\\{10}&{12}&8&2\\4&8&0&{12}\end{aligned}} \right)\)

Obtain the determinant of the matrix\(2A\)as shown below:

\( > > {\rm{d}} = \det \left( {{\rm{2A}}} \right)\)

So,\(\det \left( {{\rm{2A}}} \right) = 3712 = {2^4} \times 232\).

Obtain the\(10A\)matrix as shown below:

\(10A = \left( {\begin{aligned}{*{20}{c}}{20}&{40}&{20}&{30}\\{50}&{50}&{90}&{60}\\{50}&{60}&{40}&{10}\\{20}&{40}&0&{60}\end{aligned}} \right)\)

Obtain the determinant of the matrix\(10A\)as shown below:

\( > > {\rm{d}} = \det \left( {{\rm{10A}}} \right)\)

So,\(\det \left( {{\rm{2A}}} \right) = 2320000 = {10^4} \times 232\).

Thus, for an\(n \times n\)matrix,\(\det \left( {kA} \right) = {k^n}\det \left( A \right)\), where k is an integer.

03

Find the determinant of the matrix

Use the MATLAB command\(A = randi\left( {\left( { - {\bf{9}},9} \right),4,4} \right)\)to create a random matrix of the order\(4 \times 4\), between the integers\( - 9\)and 9.

\(A = \left( {\begin{aligned}{*{20}{c}}3&0&1&2\\6&2&4&1\\2&7&5&5\\0&1&2&3\end{aligned}} \right)\)

Compute the determinant of matrix A using the MATLAB command shown below:

\( > > {\rm{d}} = \det \left( {\rm{A}} \right)\)

Thus, the output obtained is\({\rm{d}} = - 157\).

Therefore, the determinant is\(\det \left( A \right) = - 157\).

The transpose of the matrix is

\({A^T} = \left( {\begin{aligned}{*{20}{c}}3&6&2&0\\0&2&7&1\\1&4&5&2\\2&1&5&3\end{aligned}} \right)\).

Obtain the determinant of the transpose of matrix A as shown below:

\( > > {\rm{d}} = \det \left( {{{\rm{A}}^T}} \right)\)

So,\(\det \left( {{{\rm{A}}^T}} \right) = - 157\).

Obtain the\( - A\)matrix as shown below:

\( - A = \left( {\begin{aligned}{*{20}{c}}{ - 3}&0&{ - 1}&{ - 2}\\{ - 6}&{ - 2}&{ - 4}&{ - 1}\\{ - 2}&{ - 7}&{ - 5}&{ - 5}\\0&{ - 1}&{ - 2}&{ - 3}\end{aligned}} \right)\)

Obtain the determinant of matrix\( - A\)as shown below:

\( > > {\rm{d}} = \det \left( { - {\rm{A}}} \right)\)

So,\(\det \left( { - {\rm{A}}} \right) = - 157\).

Obtain the\(2A\)matrix as shown below:

\(2A = \left( {\begin{aligned}{*{20}{c}}6&0&2&4\\{12}&4&8&2\\4&{14}&{10}&{10}\\0&2&4&6\end{aligned}} \right)\)

Obtain the determinant of the matrix\(2A\)as shown below:

\( > > {\rm{d}} = \det \left( {{\rm{2A}}} \right)\)

So,\(\det \left( {{\rm{2A}}} \right) = - 2512 = {2^4} \times \left( { - 157} \right)\).

Obtain the\(10A\)matrix as shown below:

\(10A = \left( {\begin{aligned}{*{20}{c}}{30}&0&{10}&{20}\\{60}&{20}&{40}&{10}\\{20}&{70}&{50}&{50}\\0&{10}&{20}&{30}\end{aligned}} \right)\)

Obtain the determinant of the matrix\(10A\)as shown below:

\( > > {\rm{d}} = \det \left( {{\rm{10A}}} \right)\)

So,\(\det \left( {{\rm{2A}}} \right) = - 1570000 = {10^4} \times \left( { - 157} \right)\).

Thus, for an\(n \times n\)matrix\(\det \left( {kA} \right) = {k^n}\det \left( A \right)\), where k is an integer.

04

Find the determinant of the matrix

Use the MATLAB command\(A = randi\left( {\left( { - {\bf{9}},9} \right),4,4} \right)\)to create a random matrix of order\(4 \times 4\), between the integers\( - 9\)and 9.

\(A = \left( {\begin{aligned}{*{20}{c}}2&4&6&0\\1&1&0&3\\5&6&2&1\\2&5&6&0\end{aligned}} \right)\)

Compute the determinant of matrix A using the MATLAB command shown below:

\( > > {\rm{d}} = \det \left( {\rm{A}} \right)\)

Thus, the output obtained is\({\rm{d}} = 72\).

And the determinant is\(\det \left( A \right) = 72\).

The transpose of the matrix is

\({A^T} = \left( {\begin{aligned}{*{20}{c}}2&1&5&2\\4&1&6&5\\6&0&2&6\\0&3&1&0\end{aligned}} \right)\).

Obtain the determinant of the transpose of matrix A as shown below:

\( > > {\rm{d}} = \det \left( {{{\rm{A}}^T}} \right)\)

So,\(\det \left( {{{\rm{A}}^T}} \right) = 72\).

Obtain the\( - A\)matrix as shown below:

\( - A = \left( {\begin{aligned}{*{20}{c}}{ - 2}&{ - 4}&{ - 6}&0\\{ - 1}&{ - 1}&0&{ - 3}\\{ - 5}&{ - 6}&{ - 2}&{ - 1}\\{ - 2}&{ - 5}&{ - 6}&0\end{aligned}} \right)\)

Obtain the determinant of matrix\( - A\)as shown below:

\( > > {\rm{d}} = \det \left( { - {\rm{A}}} \right)\)

So,\(\det \left( { - {\rm{A}}} \right) = 72\).

Obtain the\(2A\)matrix as shown below:

\(2A = \left( {\begin{aligned}{*{20}{c}}4&8&{12}&0\\2&2&0&6\\{10}&{12}&4&2\\4&{10}&{12}&0\end{aligned}} \right)\)

Obtain the determinant of the matrix\(2A\)as shown below:

\( > > {\rm{d}} = \det \left( {{\rm{2A}}} \right)\)

So,\(\det \left( {{\rm{2A}}} \right) = 1152 = {2^4} \times 72\).

Obtain the\(10A\)matrix as shown below:

\(10A = \left( {\begin{aligned}{*{20}{c}}{20}&{40}&{60}&0\\{10}&{10}&0&{30}\\{50}&{60}&{20}&{10}\\{20}&{50}&{60}&0\end{aligned}} \right)\)

Obtain the determinant of the matrix\(10A\)as shown below:

\( > > {\rm{d}} = \det \left( {{\rm{10A}}} \right)\)

So,\(\det \left( {{\rm{2A}}} \right) = 720000 = {10^4} \times 72\).

Thus, for an\(n \times n\)matrix,\(\det \left( {kA} \right) = {k^n}\det \left( A \right)\), where k is an integer.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 39 and 40, \(A\) is an \(n \times n\) matrix. Mark each statement True or False. Justify each answer.

39.

a. An \(n \times n\) determinant is defined by determinants of \(\left( {n - 1} \right) \times \left( {n - 1} \right)\) submatrices.

b. The \(\left( {i,j} \right)\)-cofactor of a matrix \(A\) is the matrix \({A_{ij}}\) obtained by deleting from A its \(i{\mathop{\rm th}\nolimits} \) row and \[j{\mathop{\rm th}\nolimits} \]column.

Compute the determinants of the elementary matrices given in Exercise 25-30.

30. \(\left[ {\begin{aligned}{*{20}{c}}0&1&0\\1&0&0\\0&0&1\end{aligned}} \right]\).

In Exercises 24โ€“26, use determinants to decide if the set of vectors is linearly independent.

24. \(\left( {\begin{aligned}{*{20}{c}}4\\6\\2\end{aligned}} \right)\), \(\left( {\begin{aligned}{*{20}{c}}{ - 7}\\0\\7\end{aligned}} \right)\), \(\left( {\begin{aligned}{*{20}{c}}{ - 3}\\{ - 5}\\{ - 2}\end{aligned}} \right)\)

Find the determinant in Exercise 17, where \[\left| {\begin{aligned}{*{20}{c}}{\bf{a}}&{\bf{b}}&{\bf{c}}\\{\bf{d}}&{\bf{e}}&{\bf{f}}\\{\bf{g}}&{\bf{h}}&{\bf{i}}\end{aligned}} \right| = {\bf{7}}\].

17. \[\left| {\begin{aligned}{*{20}{c}}{{\bf{a}} + {\bf{d}}}&{{\bf{b}} + {\bf{e}}}&{{\bf{c}} + {\bf{f}}}\\{\bf{d}}&{\bf{e}}&{\bf{f}}\\{\bf{g}}&{\bf{h}}&{\bf{i}}\end{aligned}} \right|\]

Is it true that \(det{\rm{ }}AB = \left( {det{\rm{ }}A} \right)\left( {det{\rm{ }}B} \right)\)? To find out, generate random \({\bf{5}} \times {\bf{5}}\) matrices A and B, and compute \[det AB - \left( {det A{\rm{ }}det B} \right)\]. Repeat the calculations for three other pairs of \(n \times n\) matrices, for various values of n. Report your results.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free