Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Is it true that \(det \left( {A + B} \right) = det A + det B\)? Experiment with four pairs of random matrices as in Exercise 44, and make a conjecture.

Short Answer

Expert verified

For various values of \(n\), \(\det \left( {A + B} \right) = \det A + \det B\) is not always true.

Step by step solution

01

Write the MATLAB commands

To create a random\(m \times m\)matrix A, use the MATLAB command

\( > > A = rand\left( m \right)\).

To compute thedeterminant of matrix A, use the MATLAB command

\( > > det\left( A \right)\).

02

Find the determinant of the matrix

Use the MATLAB command\(A = rand\left( {\bf{5}} \right)\)to create a random matrix of order\(5 \times 5\), as shown below:

\(A = \left( {\begin{aligned}{*{20}{c}}{0.2277}&{0.1848}&{0.2581}&{0.7112}&{0.4242}\\{0.4357}&{0.9049}&{0.4087}&{0.2217}&{0.5079}\\{0.3111}&{0.9797}&{0.5649}&{0.1174}&{0.0855}\\{0.9234}&{0.4389}&{0.2622}&{0.2967}&{0.2625}\\{0.4302}&{0.1111}&{0.6028}&{0.3188}&{0.8010}\end{aligned}} \right)\)

Use the MATLAB command\(B = rand\left( {\bf{5}} \right)\)to create a random matrix of order\(5 \times 5\), as shown below:

\(B = \left( {\begin{aligned}{*{20}{c}}{0.0292}&{0.2373}&{0.2316}&{0.3674}&{0.7962}\\{0.9289}&{0.4588}&{0.4889}&{0.9880}&{0.0987}\\{0.7302}&{0.9631}&{0.6241}&{0.0371}&{0.2619}\\{0.4886}&{0.5468}&{0.6791}&{0.8852}&{0.3354}\\{0.5785}&{0.5211}&{0.3955}&{0.9133}&{0.6797}\end{aligned}} \right)\)

Obtain the matrix\(C = A + B\)using the MATLAB command\({\bf{C}} = {\bf{A}} + {\bf{B}}\), as shown below:

\(C = A + B = \left( {\begin{aligned}{*{20}{c}}{0.2569}&{0.4221}&{0.4897}&{1.0787}&{1.2204}\\{1.3646}&{0.3637}&{0.8976}&{1.2097}&{0.6066}\\{1.0414}&{1.9428}&{1.2190}&{0.1552}&{0.3474}\\{1.4120}&{0.9857}&{0.9413}&{1.1818}&{0.5978}\\{1.0087}&{0.6323}&{0.9984}&{1.2321}&{1.4807}\end{aligned}} \right)\)

Compute\(\det \left( {A + B} \right) - \left( {\det A + \det B} \right)\)using the MATLAB command shown below:

\( > > \det \left( {\rm{C}} \right) - \det \left( {\rm{A}} \right) - \det \left( {\rm{B}} \right)\)

The output is\( > > \det \left( {\rm{C}} \right) - \det \left( {\rm{A}} \right) - \det \left( {\rm{B}} \right) = - 0.0594\).

Since the difference is not zero,\(\det \left( {A + B} \right) - \left( {\det A + \det B} \right) \ne 0\), or\(\det \left( {A + B} \right) \ne \det A + \det B\).

Therefore, it is not always true that \(\det \left( {A + B} \right) \ne \det A + \det B\).

03

Find the determinant of the matrix

Use the MATLAB command\(A = rand\left( {\bf{4}} \right)\)to create a random matrix of the order\(4 \times 4\).

\(A = \left( {\begin{aligned}{*{20}{c}}{0.1366}&{0.4942}&{0.8909}&{0.0305}\\{0.7212}&{0.7791}&{0.3342}&{0.7441}\\{0.1068}&{0.7150}&{0.6987}&{0.5000}\\{0.6538}&{0.9037}&{0.1978}&{0.4799}\end{aligned}} \right)\)

Use the MATLAB command\(B = rand\left( {\bf{4}} \right)\)to create a random matrix of the order\(4 \times 4\).

\(B = \left( {\begin{aligned}{*{20}{c}}{0.9047}&{0.8055}&{0.8865}&{0.9787}\\{0.6099}&{0.5767}&{0.0287}&{0.7127}\\{0.6177}&{0.1829}&{0.4899}&{0.5005}\\{0.8594}&{0.2399}&{0.1679}&{0.4711}\end{aligned}} \right)\)

Obtain the matrix\(C = A + B\)using the MATLAB command\({\bf{C}} = {\bf{A}} + {\bf{B}}\), as shown below:

\(C = A + B = \left( {\begin{aligned}{*{20}{c}}{1.0413}&{1.2997}&{1.7774}&{1.0092}\\{0.3311}&{0.3558}&{0.3628}&{1.4568}\\{0.7244}&{0.8980}&{1.1886}&{1.0005}\\{1.5132}&{1.1437}&{0.3657}&{0.9510}\end{aligned}} \right)\)

Compute\(\det \left( {A + B} \right) - \left( {\det A + \det B} \right)\)using the MATLAB command shown below:

\( > > \det \left( {\rm{C}} \right) - \det \left( {\rm{A}} \right) - \det \left( {\rm{B}} \right)\)

So, the output is

\( > > \det \left( {\rm{C}} \right) - \det \left( {\rm{A}} \right) - \det \left( {\rm{B}} \right) = 0.2872\).

Since the difference is not zero,\(\det \left( {A + B} \right) - \left( {\det A + \det B} \right) \ne 0\), or\(\det \left( {A + B} \right) \ne \det A + \det B\).

Therefore, it is not always true that \(\det \left( {A + B} \right) \ne \det A + \det B\).

04

Find the determinant of the matrix

Use the MATLAB command\(A = rand\left( {\bf{3}} \right)\)to create a random matrix of the order\(3 \times 3\)as shown below:

\(A = \left( {\begin{aligned}{*{20}{c}}{0.0596}&{0.0714}&{0.8181}\\{0.6820}&{0.5216}&{0.8175}\\{0.0424}&{0.0967}&{0.7224}\end{aligned}} \right)\)

Use the MATLAB command\(B = rand\left( {\bf{3}} \right)\)to create a random matrix of the order\(3 \times 3\)as shown below:

\(B = \left( {\begin{aligned}{*{20}{c}}{0.1499}&{0.9730}&{0.4538}\\{0.6596}&{0.6490}&{0.4324}\\{0.5186}&{0.8003}&{0.8253}\end{aligned}} \right)\)

Obtain the matrix\(C = A + B\)using the MATLAB command\({\bf{C}} = {\bf{A}} + {\bf{B}}\)as shown below:

\(C = A + B = \left( {\begin{aligned}{*{20}{c}}{0.2095}&{1.0444}&{1.2719}\\{1.3416}&{1.1706}&{1.2499}\\{0.5610}&{0.8971}&{1.5478}\end{aligned}} \right)\)

Compute\(\det \left( {A + B} \right) - \left( {\det A + \det B} \right)\)using the MATLAB command shown below:

\( > > \det \left( {\rm{C}} \right) - \det \left( {\rm{A}} \right) - \det \left( {\rm{B}} \right)\)

So, the output is shown below:

\( > > \det \left( {\rm{C}} \right) - \det \left( {\rm{A}} \right) - \det \left( {\rm{B}} \right) = - 0.4208\)

Since the difference is not zero,\(\det \left( {A + B} \right) - \left( {\det A + \det B} \right) \ne 0\), or\(\det \left( {A + B} \right) \ne \det A + \det B\).

Therefore, it is not always true that \(\det \left( {A + B} \right) \ne \det A + \det B\).

05

Determinant of the matrix

Use the MATLAB command\(A = rand\left( {\bf{6}} \right)\)to create a random matrix of the order\(6 \times 6\).

\(A = \left( {\begin{aligned}{*{20}{c}}{0.0835}&{0.0605}&{0.2920}&{0.3724}&{0.0527}&{0.4177}\\{0.1332}&{0.3993}&{0.4317}&{0.1981}&{0.7379}&{0.9831}\\{0.1734}&{0.5269}&{0.0155}&{0.4897}&{0.2691}&{0.3015}\\{0.3909}&{0.4168}&{0.9841}&{0.3395}&{0.4228}&{0.7011}\\{0.8314}&{0.6569}&{0.1672}&{0.9516}&{0.5479}&{0.6663}\\{0.8034}&{0.6280}&{0.1062}&{0.9203}&{0.9427}&{0.5391}\end{aligned}} \right)\)

Use the MATLAB command\(B = rand\left( {\bf{6}} \right)\)to create a random matrix of the order\(6 \times 6\).

\(B = \left( {\begin{aligned}{*{20}{c}}{0.6981}&{0.0326}&{0.4607}&{0.1909}&{0.3846}&{0.8244}\\{0.6665}&{0.5612}&{0.9816}&{0.4283}&{0.5830}&{0.9827}\\{0.1781}&{0.8819}&{0.1564}&{0.4820}&{0.2518}&{0.7302}\\{0.1280}&{0.6692}&{0.8555}&{0.1206}&{0.2904}&{0.3439}\\{0.9991}&{0.1904}&{0.6448}&{0.5895}&{0.6171}&{0.5841}\\{0.1711}&{0.3689}&{0.3763}&{0.2262}&{0.2653}&{0.1078}\end{aligned}} \right)\)

Obtain the matrix\(C = A + B\)using the MATLAB command\({\bf{C}} = {\bf{A}} + {\bf{B}}\)shown below:

\(C = A + B = \left( {\begin{aligned}{*{20}{c}}{0.7816}&{0.0931}&{0.7527}&{0.5633}&{0.4373}&{1.2421}\\{0.7997}&{0.9605}&{1.4133}&{0.6264}&{1.3208}&{1.9657}\\{0.3515}&{1.4087}&{0.1719}&{0.9717}&{0.5209}&{1.0317}\\{0.5190}&{1.0860}&{1.8396}&{0.4601}&{0.7133}&{1.0450}\\{1.8305}&{0.8473}&{0.8119}&{1.5411}&{1.1650}&{1.2504}\\{0.9745}&{0.9969}&{0.4825}&{1.1465}&{1.2080}&{1.6469}\end{aligned}} \right)\)

Compute\(\det \left( {A + B} \right) - \left( {\det A + \det B} \right)\)using the MATLAB command shown below:

\( > > \det \left( {\rm{C}} \right) - \det \left( {\rm{A}} \right) - \det \left( {\rm{B}} \right)\)

So, the output is shown below:

\( > > \det \left( {\rm{C}} \right) - \det \left( {\rm{A}} \right) - \det \left( {\rm{B}} \right) = - 0.5297\)

Since the difference is not zero,\(\det \left( {A + B} \right) - \left( {\det A + \det B} \right) \ne 0\)or\(\det \left( {A + B} \right) \ne \det A + \det B\).

Therefore, it is not always true that \(\det \left( {A + B} \right) \ne \det A + \det B\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the determinants in Exercises 5-10 by row reduction to echelon form.

\(\left| {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{3}}&{\bf{0}}&{\bf{2}}\\{ - {\bf{2}}}&{ - {\bf{5}}}&{\bf{7}}&{\bf{4}}\\{\bf{3}}&{\bf{5}}&{\bf{2}}&{\bf{1}}\\{\bf{1}}&{ - {\bf{1}}}&{\bf{2}}&{ - {\bf{3}}}\end{array}} \right|\)

Compute the determinants in Exercises 9-14 by cofactor expnasions. At each step, choose a row or column that involves the least amount of computation.

\(\left| {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{0}}&{ - {\bf{7}}}&{\bf{3}}&{ - {\bf{5}}}\\{\bf{0}}&{\bf{0}}&{\bf{2}}&{\bf{0}}&{\bf{0}}\\{\bf{7}}&{\bf{3}}&{ - {\bf{6}}}&{\bf{4}}&{ - {\bf{8}}}\\{\bf{5}}&{\bf{0}}&{\bf{5}}&{\bf{2}}&{ - {\bf{3}}}\\{\bf{0}}&{\bf{0}}&{\bf{9}}&{ - {\bf{1}}}&{\bf{2}}\end{array}} \right|\)

Question: In Exercise 14, compute the adjugate of the given matrix, and then use Theorem 8 to give the inverse of the matrix.

14. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{ - {\bf{1}}}&{\bf{2}}\\{\bf{0}}&{\bf{2}}&{\bf{1}}\\{\bf{2}}&{\bf{0}}&{\bf{4}}\end{array}} \right)\)

In Exercise 33-36, verify that \(\det EA = \left( {\det E} \right)\left( {\det A} \right)\)where E is the elementary matrix shown and \(A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\).

34. \(\left[ {\begin{array}{*{20}{c}}1&0\\k&1\end{array}} \right]\)

Combine the methods of row reduction and cofactor expansion to compute the determinant in Exercise 12.

12. \(\left| {\begin{aligned}{*{20}{c}}{ - {\bf{1}}}&{\bf{2}}&{\bf{3}}&{\bf{0}}\\{\bf{3}}&{\bf{4}}&{\bf{3}}&{\bf{0}}\\{{\bf{11}}}&{\bf{4}}&{\bf{6}}&{\bf{6}}\\{\bf{4}}&{\bf{2}}&{\bf{4}}&{\bf{3}}\end{aligned}} \right|\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free