Chapter 3: Q30Q (page 165)
Compute the determinants of the elementary matrices given in Exercise 25-30.
30. \(\left[ {\begin{aligned}{*{20}{c}}0&1&0\\1&0&0\\0&0&1\end{aligned}} \right]\).
Short Answer
The determinant of the matrix is \( - 1\).
Chapter 3: Q30Q (page 165)
Compute the determinants of the elementary matrices given in Exercise 25-30.
30. \(\left[ {\begin{aligned}{*{20}{c}}0&1&0\\1&0&0\\0&0&1\end{aligned}} \right]\).
The determinant of the matrix is \( - 1\).
All the tools & learning materials you need for study success - in one app.
Get started for freeQuestion: In Exercises 31–36, mention an appropriate theorem in your explanation.
31. Show that if A is invertible, then \(det{\rm{ }}{A^{ - 1}} = \frac{1}{{det{\rm{ }}A}}\).
Question: In Exercise 9, determine the values of the parameter s for which the system has a unique solution, and describe the solution.
9.
\(\begin{array}{c}s{x_{\bf{1}}} + {\bf{2}}s{x_{\bf{2}}} = - {\bf{1}}\\{\bf{3}}{x_{\bf{1}}} + {\bf{6}}s{x_{\bf{2}}} = {\bf{4}}\end{array}\)
Question: In Exercise 16, compute the adjugate of the given matrix, and then use Theorem 8 to give the inverse of the matrix.
16. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{2}}&{\bf{4}}\\{\bf{0}}&{ - {\bf{3}}}&{\bf{1}}\\{\bf{0}}&{\bf{0}}&{ - {\bf{2}}}\end{array}} \right)\)
Compute the determinant in Exercise 6 using a cofactor expansion across the first row.
6. \(\left| {\begin{aligned}{*{20}{c}}{\bf{5}}&{ - {\bf{2}}}&{\bf{2}}\\{\bf{0}}&{\bf{3}}&{ - {\bf{3}}}\\{\bf{2}}&{ - {\bf{4}}}&{\bf{7}}\end{aligned}} \right|\)
Find the determinant in Exercise 15, where \[\left| {\begin{array}{*{20}{c}}{\bf{a}}&{\bf{b}}&{\bf{c}}\\{\bf{d}}&{\bf{e}}&{\bf{f}}\\{\bf{g}}&{\bf{h}}&{\bf{i}}\end{array}} \right| = {\bf{7}}\].
15. \[\left| {\begin{array}{*{20}{c}}{\bf{a}}&{\bf{b}}&{\bf{c}}\\{\bf{d}}&{\bf{e}}&{\bf{f}}\\{{\bf{3g}}}&{{\bf{3h}}}&{{\bf{3i}}}\end{array}} \right|\]
What do you think about this solution?
We value your feedback to improve our textbook solutions.