Chapter 3: Q29E (page 165)
Compute \(det{\rm{ }}{B^4}\), where \(B = \left[ {\begin{aligned}{{}{}}1&0&1\\1&1&2\\1&2&1\end{aligned}} \right]\).
Short Answer
The value is \(\det {\rm{ }}{B^4} = 16\).
Chapter 3: Q29E (page 165)
Compute \(det{\rm{ }}{B^4}\), where \(B = \left[ {\begin{aligned}{{}{}}1&0&1\\1&1&2\\1&2&1\end{aligned}} \right]\).
The value is \(\det {\rm{ }}{B^4} = 16\).
All the tools & learning materials you need for study success - in one app.
Get started for freeCompute the determinant in Exercise 8 using a cofactor expansion across the first row.
8. \(\left| {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{1}}&{\bf{2}}\\{\bf{4}}&{\bf{0}}&{\bf{3}}\\{\bf{3}}&{ - {\bf{2}}}&{\bf{5}}\end{array}} \right|\)
Let \(A = \left[ {\begin{array}{*{20}{c}}3&1\\4&2\end{array}} \right]\). Write \(5A\). Is \(\det 5A = 5\det A\)?
Find the determinant in Exercise 20, where \[\left| {\begin{array}{*{20}{c}}{\bf{a}}&{\bf{b}}&{\bf{c}}\\{\bf{d}}&{\bf{e}}&{\bf{f}}\\{\bf{g}}&{\bf{h}}&{\bf{i}}\end{array}} \right| = {\bf{7}}\].
20. \[\left| {\begin{array}{*{20}{c}}{\bf{a}}&{\bf{b}}&{\bf{c}}\\{{\bf{d}} + {\bf{3g}}}&{{\bf{e}} + {\bf{3h}}}&{{\bf{f}} + {\bf{3i}}}\\{\bf{g}}&{\bf{h}}&{\bf{i}}\end{array}} \right|\]
Combine the methods of row reduction and cofactor expansion to compute the determinant in Exercise 11.
11. \(\left| {\begin{aligned}{*{20}{c}}{\bf{3}}&{\bf{4}}&{ - {\bf{3}}}&{ - {\bf{1}}}\\{\bf{3}}&{\bf{0}}&{\bf{1}}&{ - {\bf{3}}}\\{ - {\bf{6}}}&{\bf{0}}&{ - {\bf{4}}}&{\bf{3}}\\{\bf{6}}&{\bf{8}}&{ - {\bf{4}}}&{ - {\bf{1}}}\end{aligned}} \right|\)
Each equation in Exercises 1-4 illustrates a property of determinants. State the property
\(\left| {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{2}}&{\bf{2}}\\{\bf{0}}&{\bf{3}}&{ - {\bf{4}}}\\{\bf{3}}&{\bf{7}}&{\bf{4}}\end{array}} \right| = \left| {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{2}}&{\bf{2}}\\{\bf{0}}&{\bf{3}}&{ - {\bf{4}}}\\{\bf{0}}&{\bf{1}}&{ - {\bf{2}}}\end{array}} \right|\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.