Chapter 3: Q27Q (page 165)
Compute the determinants of the elementary matrices given in Exercise 25-30.
27. \(\left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\k&0&1\end{array}} \right]\).
Short Answer
The determinant of the matrix is 1.
Chapter 3: Q27Q (page 165)
Compute the determinants of the elementary matrices given in Exercise 25-30.
27. \(\left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\k&0&1\end{array}} \right]\).
The determinant of the matrix is 1.
All the tools & learning materials you need for study success - in one app.
Get started for freeEach equation in Exercises 1-4 illustrates a property of determinants. State the property
\(\left| {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{3}}&{ - {\bf{4}}}\\{\bf{2}}&{\bf{0}}&{ - {\bf{3}}}\\{\bf{3}}&{ - {\bf{5}}}&{\bf{2}}\end{array}} \right| = \left| {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{3}}&{ - {\bf{4}}}\\{\bf{0}}&{ - {\bf{6}}}&{\bf{5}}\\{\bf{3}}&{ - {\bf{5}}}&{\bf{2}}\end{array}} \right|\)
Compute the determinants in Exercises 9-14 by cofactor expnasions. At each step, choose a row or column that involves the least amount of computation.
\(\left| {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{0}}&{ - {\bf{7}}}&{\bf{3}}&{ - {\bf{5}}}\\{\bf{0}}&{\bf{0}}&{\bf{2}}&{\bf{0}}&{\bf{0}}\\{\bf{7}}&{\bf{3}}&{ - {\bf{6}}}&{\bf{4}}&{ - {\bf{8}}}\\{\bf{5}}&{\bf{0}}&{\bf{5}}&{\bf{2}}&{ - {\bf{3}}}\\{\bf{0}}&{\bf{0}}&{\bf{9}}&{ - {\bf{1}}}&{\bf{2}}\end{array}} \right|\)
Construct a random \({\bf{4}} \times {\bf{4}}\) matrix A with integer entries between \( - {\bf{9}}\) and 9, and compare det A with det\({A^T}\), \(det\left( { - A} \right)\), \(det\left( {{\bf{2}}A} \right)\), and \(det\left( {{\bf{10}}A} \right)\). Repeat with two other random \({\bf{4}} \times {\bf{4}}\) integer matrices, and make conjectures about how these determinants are related. (Refer to Exercise 36 in Section 2.1.) Then check your conjectures with several random \({\bf{5}} \times {\bf{5}}\) and \({\bf{6}} \times {\bf{6}}\) integer matrices. Modify your conjectures, if necessary, and report your results.
Find the determinants in Exercises 5-10 by row reduction to echelon form.
\(\left| {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{3}}&{\bf{2}}&{ - {\bf{4}}}\\{\bf{0}}&{\bf{1}}&{\bf{2}}&{ - {\bf{5}}}\\{\bf{2}}&{\bf{7}}&{\bf{6}}&{ - {\bf{3}}}\\{ - {\bf{3}}}&{ - {\bf{10}}}&{ - {\bf{7}}}&{\bf{2}}\end{aligned}} \right|\)
The expansion of a \({\bf{3}} \times {\bf{3}}\) determinant can be remembered by the following device. Write a second type of the first two columns to the right of the matrix, and compute the determinant by multiplying entries on six diagonals.
atr
Add the downward diagonal products and subtract the upward products. Use this method to compute the determinants in Exercises 15-18. Warning: This trick does not generalize in any reasonable way to \({\bf{4}} \times {\bf{4}}\) or larger matrices.
\(\left| {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{3}}&{\bf{4}}\\{\bf{2}}&{\bf{3}}&{\bf{1}}\\{\bf{3}}&{\bf{3}}&{\bf{2}}\end{aligned}} \right|\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.