Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 24–26, use determinants to decide if the set of vectors is linearly independent.

26. \(\left[ {\begin{aligned}{*{20}{c}}3\\5\\{ - 6}\\4\end{aligned}} \right]\), \(\left[ {\begin{aligned}{*{20}{c}}2\\{ - 6}\\0\\7\end{aligned}} \right]\), \(\left[ {\begin{aligned}{*{20}{c}}{ - 2}\\{ - 1}\\3\\0\end{aligned}} \right]\), \(\left[ {\begin{aligned}{*{20}{c}}0\\0\\0\\{ - 2}\end{aligned}} \right]\)

Short Answer

Expert verified

The set of vectors is linearly independent.

Step by step solution

01

State the condition for linear independence of the set of vectors

The set of vectors\({{\bf{b}}_1}\),\({{\bf{b}}_2}\),\({{\bf{b}}_3}\),\({{\bf{b}}_4}\)are said to belinearly independent if thedeterminant of the matrix \(\left[ {\begin{aligned}{*{20}{c}}{{{\bf{b}}_1}}&{{{\bf{b}}_2}}&{{{\bf{b}}_3}}&{{{\bf{b}}_4}}\end{aligned}} \right]\) is 0 (\(\left| {\begin{aligned}{*{20}{c}}{{{\bf{b}}_1}}&{{{\bf{b}}_2}}&{{{\bf{b}}_3}}&{{{\bf{b}}_4}}\end{aligned}} \right| = 0\)).

02

Write the vectors in the matrix form

Consider the vectors\({{\bf{b}}_1} = \left[ {\begin{aligned}{*{20}{c}}3\\5\\{ - 6}\\4\end{aligned}} \right]\), \({{\bf{b}}_2} = \left[ {\begin{aligned}{*{20}{c}}2\\{ - 6}\\0\\7\end{aligned}} \right]\), \({{\bf{b}}_3} = \left[ {\begin{aligned}{*{20}{c}}{ - 2}\\{ - 1}\\3\\0\end{aligned}} \right]\),and\({{\bf{b}}_4} = \left[ {\begin{aligned}{*{20}{c}}0\\0\\0\\{ - 2}\end{aligned}} \right]\).

Constructmatrix\(A = \left[ {\begin{aligned}{*{20}{c}}{{{\bf{b}}_1}}&{{{\bf{b}}_2}}&{{{\bf{b}}_3}}&{{{\bf{b}}_4}}\end{aligned}} \right]\)by using the vectors\({{\bf{b}}_1}\),\({{\bf{b}}_2}\),\({{\bf{b}}_3}\),\({{\bf{b}}_4}\), as shown below:

\(A = \left[ {\begin{aligned}{*{20}{c}}3&2&{ - 2}&0\\5&{ - 6}&{ - 1}&0\\{ - 6}&0&3&0\\4&7&0&{ - 2}\end{aligned}} \right]\)

03

Check the linear independence of the set of vectors

Expand along the fourth column to obtain the determinant of matrix A, as shown below:

\(\begin{aligned}{c}\det \left( A \right) = \left| {\begin{aligned}{*{20}{c}}3&2&{ - 2}&0\\5&{ - 6}&{ - 1}&0\\{ - 6}&0&3&0\\4&7&0&{ - 2}\end{aligned}} \right|\\ = {\left( { - 1} \right)^{1 + 1}} \cdot \left( 0 \right)\left| {\begin{aligned}{*{20}{c}}5&{ - 6}&{ - 1}\\{ - 6}&0&3\\4&7&0\end{aligned}} \right| + {\left( { - 1} \right)^{1 + 2}} \cdot \left( 0 \right)\left| {\begin{aligned}{*{20}{c}}3&2&{ - 2}\\{ - 6}&0&3\\4&7&0\end{aligned}} \right|\\ + {\left( { - 1} \right)^{1 + 3}} \cdot \left( 0 \right)\left| {\begin{aligned}{*{20}{c}}3&2&{ - 2}\\5&{ - 6}&{ - 1}\\4&7&0\end{aligned}} \right| + {\left( { - 1} \right)^{1 + 4}} \cdot \left( { - 2} \right)\left| {\begin{aligned}{*{20}{c}}3&2&{ - 2}\\5&{ - 6}&{ - 1}\\{ - 6}&0&3\end{aligned}} \right|\\ = 0 + 0 + 0 - \left( { - 2} \right)\left| {\begin{aligned}{*{20}{c}}3&2&{ - 2}\\5&{ - 6}&{ - 1}\\{ - 6}&0&3\end{aligned}} \right|\\ = 2\left| {\begin{aligned}{*{20}{c}}3&2&{ - 2}\\5&{ - 6}&{ - 1}\\{ - 6}&0&3\end{aligned}} \right|\end{aligned}\)

Compute the determinant\(\left| {\begin{aligned}{*{20}{c}}3&2&{ - 2}\\5&{ - 6}&{ - 1}\\{ - 6}&0&3\end{aligned}} \right|\).

\(\begin{aligned}{c}\left| {\begin{aligned}{*{20}{c}}3&2&{ - 2}\\5&{ - 6}&{ - 1}\\{ - 6}&0&3\end{aligned}} \right| = 3\left( { - 6\left( 3 \right) - 0\left( { - 1} \right)} \right) - 2\left( {5\left( 3 \right) - \left( { - 6} \right)\left( { - 1} \right)} \right) - 2\left( {5\left( 0 \right) + 6\left( { - 6} \right)} \right)\\ = - 54 - 18 + 72\\ = 0\end{aligned}\)

Obtain the determinant of matrix A.

\(\begin{aligned}{c}\det \left( A \right) = 2\left( 0 \right)\\ = 0\end{aligned}\)

Since\(\det \left( A \right) = 0\), the vectors are linearly independent.

Thus, the set of vectors is linearly independent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 24–26, use determinants to decide if the set of vectors is linearly independent.

24. \(\left( {\begin{aligned}{*{20}{c}}4\\6\\2\end{aligned}} \right)\), \(\left( {\begin{aligned}{*{20}{c}}{ - 7}\\0\\7\end{aligned}} \right)\), \(\left( {\begin{aligned}{*{20}{c}}{ - 3}\\{ - 5}\\{ - 2}\end{aligned}} \right)\)

Combine the methods of row reduction and cofactor expansion to compute the determinant in Exercise 13.

13. \(\left| {\begin{aligned}{*{20}{c}}{\bf{2}}&{\bf{5}}&{\bf{4}}&{\bf{1}}\\{\bf{4}}&{\bf{7}}&{\bf{6}}&{\bf{2}}\\{\bf{6}}&{ - {\bf{2}}}&{ - {\bf{4}}}&{\bf{0}}\\{ - {\bf{6}}}&{\bf{7}}&{\bf{7}}&{\bf{0}}\end{aligned}} \right|\)

Compute the determinant in Exercise 9 by cofactor expansions. At each step, choose a row or column that involves the least amount of computation.

9. \(\left| {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{0}}&{\bf{0}}&{\bf{5}}\\{\bf{1}}&{\bf{7}}&{\bf{2}}&{ - {\bf{5}}}\\{\bf{3}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{8}}&{\bf{3}}&{\bf{1}}&{\bf{7}}\end{array}} \right|\)

In Exercise 19-24, explore the effect of an elementary row operation on the determinant of a matrix. In each case, state the row operation and describe how it affects the determinant.

\(\left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{a + kc}&{b + kd}\\c&d\end{array}} \right]\)

Question: In Exercise 14, compute the adjugate of the given matrix, and then use Theorem 8 to give the inverse of the matrix.

14. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{ - {\bf{1}}}&{\bf{2}}\\{\bf{0}}&{\bf{2}}&{\bf{1}}\\{\bf{2}}&{\bf{0}}&{\bf{4}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free