Chapter 3: Q26Q (page 165)
Compute the determinants of the elementary matrices given in Exercise 25-30.
26. \(\left[ {\begin{aligned}{*{20}{c}}0&0&1\\0&1&0\\1&0&0\end{aligned}} \right]\).
Short Answer
The determinant of the matrix is \( - 1\).
Chapter 3: Q26Q (page 165)
Compute the determinants of the elementary matrices given in Exercise 25-30.
26. \(\left[ {\begin{aligned}{*{20}{c}}0&0&1\\0&1&0\\1&0&0\end{aligned}} \right]\).
The determinant of the matrix is \( - 1\).
All the tools & learning materials you need for study success - in one app.
Get started for freeQuestion: In Exercise 13, compute the adjugate of the given matrix, and then use Theorem 8 to give the inverse of the matrix.
13. \(\left( {\begin{array}{*{20}{c}}{\bf{3}}&{\bf{5}}&{\bf{4}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}\\{\bf{2}}&{\bf{1}}&{\bf{1}}\end{array}} \right)\)
Find the determinant in Exercise 20, where \[\left| {\begin{array}{*{20}{c}}{\bf{a}}&{\bf{b}}&{\bf{c}}\\{\bf{d}}&{\bf{e}}&{\bf{f}}\\{\bf{g}}&{\bf{h}}&{\bf{i}}\end{array}} \right| = {\bf{7}}\].
20. \[\left| {\begin{array}{*{20}{c}}{\bf{a}}&{\bf{b}}&{\bf{c}}\\{{\bf{d}} + {\bf{3g}}}&{{\bf{e}} + {\bf{3h}}}&{{\bf{f}} + {\bf{3i}}}\\{\bf{g}}&{\bf{h}}&{\bf{i}}\end{array}} \right|\]
In Exercises 21–23, use determinants to find out if the matrix is invertible.
21. \(\left( {\begin{aligned}{*{20}{c}}2&6&0\\1&3&2\\3&9&2\end{aligned}} \right)\)
Combine the methods of row reduction and cofactor expansion to compute the determinant in Exercise 11.
11. \(\left| {\begin{aligned}{*{20}{c}}{\bf{3}}&{\bf{4}}&{ - {\bf{3}}}&{ - {\bf{1}}}\\{\bf{3}}&{\bf{0}}&{\bf{1}}&{ - {\bf{3}}}\\{ - {\bf{6}}}&{\bf{0}}&{ - {\bf{4}}}&{\bf{3}}\\{\bf{6}}&{\bf{8}}&{ - {\bf{4}}}&{ - {\bf{1}}}\end{aligned}} \right|\)
In Exercise 19-24, explore the effect of an elementary row operation on the determinant of a matrix. In each case, state the row operation and describe how it affects the determinant.
\(\left[ {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right],\left[ {\begin{aligned}{*{20}{c}}c&d\\a&b\end{aligned}} \right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.