Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 24–26, use determinants to decide if the set of vectors is linearly independent.

24. \(\left( {\begin{aligned}{*{20}{c}}4\\6\\2\end{aligned}} \right)\), \(\left( {\begin{aligned}{*{20}{c}}{ - 7}\\0\\7\end{aligned}} \right)\), \(\left( {\begin{aligned}{*{20}{c}}{ - 3}\\{ - 5}\\{ - 2}\end{aligned}} \right)\)

Short Answer

Expert verified

The set of vectors is linearly independent.

Step by step solution

01

State the condition for linear independency of the set of vectors

The set of vectors\({{\bf{b}}_1}\),\({{\bf{b}}_2}\),\({{\bf{b}}_3}\)are said to belinearly independent if thedeterminant of the matrix \(\left( {\begin{aligned}{*{20}{c}}{{{\bf{b}}_1}}&{{{\bf{b}}_2}}&{{{\bf{b}}_3}}\end{aligned}} \right)\) is 0 (\(\left| {\begin{aligned}{*{20}{c}}{{{\bf{b}}_1}}&{{{\bf{b}}_2}}&{{{\bf{b}}_3}}\end{aligned}} \right| = 0\)).

02

Write the vectors in the matrix form

Consider the vectors\({{\bf{b}}_1} = \left( {\begin{aligned}{*{20}{c}}4\\6\\2\end{aligned}} \right)\), \({{\bf{b}}_2} = \left( {\begin{aligned}{*{20}{c}}{ - 7}\\0\\7\end{aligned}} \right)\),and\({{\bf{b}}_3} = \left( {\begin{aligned}{*{20}{c}}{ - 3}\\{ - 5}\\{ - 2}\end{aligned}} \right)\).

Constructmatrix\(A = \left( {\begin{aligned}{*{20}{c}}{{{\bf{b}}_1}}&{{{\bf{b}}_2}}&{{{\bf{b}}_3}}\end{aligned}} \right)\)by using vectors\({{\bf{b}}_1}\),\({{\bf{b}}_2}\),\({{\bf{b}}_3}\),as shown below:

\(A = \left( {\begin{aligned}{*{20}{c}}4&{ - 7}&{ - 3}\\6&0&{ - 5}\\2&7&{ - 2}\end{aligned}} \right)\)

03

Check the linear independency of the set of vectors

Obtain the determinant of matrix A, as shown below:

\(\begin{aligned}{c}\det \left( A \right) = \left| {\begin{aligned}{*{20}{c}}4&{ - 7}&{ - 3}\\6&0&{ - 5}\\2&7&{ - 2}\end{aligned}} \right|\\ = 4 \cdot \left| {\begin{aligned}{*{20}{c}}0&{ - 5}\\7&{ - 2}\end{aligned}} \right| + 7 \cdot \left| {\begin{aligned}{*{20}{c}}6&{ - 5}\\2&{ - 2}\end{aligned}} \right| - 3 \cdot \left| {\begin{aligned}{*{20}{c}}6&0\\2&7\end{aligned}} \right|\\ = 4\left( {0\left( { - 2} \right) + 5\left( 7 \right)} \right) + 7\left( {6\left( { - 2} \right) - 2\left( { - 5} \right)} \right) - 3\left( {6\left( 7 \right) - 0\left( 2 \right)} \right)\\ = 140 - 14 - 126\\ = 0\end{aligned}\)

Since \(\det \left( A \right) = 0\), the vectors are linearly independent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Compute the determinant in Exercise 1 using a cofactor expansion across the first row. Also compute the determinant by a cofactor expansion down the second column.

  1. \(\left| {\begin{aligned}{*{20}{c}}{\bf{3}}&{\bf{0}}&{\bf{4}}\\{\bf{2}}&{\bf{3}}&{\bf{2}}\\{\bf{0}}&{\bf{5}}&{ - {\bf{1}}}\end{aligned}} \right|\)

Find the determinant in Exercise 19, where \[\left| {\begin{aligned}{*{20}{c}}{\bf{a}}&{\bf{b}}&{\bf{c}}\\{\bf{d}}&{\bf{e}}&{\bf{f}}\\{\bf{g}}&{\bf{h}}&{\bf{i}}\end{aligned}} \right| = {\bf{7}}\].

19. \[\left| {\begin{aligned}{*{20}{c}}{\bf{a}}&{\bf{b}}&{\bf{c}}\\{{\bf{2d}} + {\bf{a}}}&{{\bf{2e}} + {\bf{b}}}&{{\bf{2f}} + {\bf{c}}}\\{\bf{g}}&{\bf{h}}&{\bf{i}}\end{aligned}} \right|\]

In Exercise 19-24, explore the effect of an elementary row operation on the determinant of a matrix. In each case, state the row operation and describe how it affects the determinant.

\(\left[ {\begin{array}{*{20}{c}}a&b&c\\{\bf{3}}&{\bf{2}}&{\bf{1}}\\{\bf{4}}&{\bf{5}}&{\bf{6}}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{\bf{3}}&{\bf{2}}&{\bf{1}}\\a&b&c\\{\bf{4}}&{\bf{5}}&{\bf{6}}\end{array}} \right]\)

Each equation in Exercises 1-4 illustrates a property of determinants. State the property

\(\left| {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{2}}&{\bf{2}}\\{\bf{0}}&{\bf{3}}&{ - {\bf{4}}}\\{\bf{3}}&{\bf{7}}&{\bf{4}}\end{array}} \right| = \left| {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{2}}&{\bf{2}}\\{\bf{0}}&{\bf{3}}&{ - {\bf{4}}}\\{\bf{0}}&{\bf{1}}&{ - {\bf{2}}}\end{array}} \right|\)

Question: In Exercises 31–36, mention an appropriate theorem in your explanation.

31. Show that if A is invertible, then \(det{\rm{ }}{A^{ - 1}} = \frac{1}{{det{\rm{ }}A}}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free