Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 21–23, use determinants to find out if the matrix is invertible.

22. \(\left( {\begin{aligned}{*{20}{c}}5&1&{ - 1}\\1&{ - 3}&{ - 2}\\0&5&3\end{aligned}} \right)\)

Short Answer

Expert verified

The matrix is invertible.

Step by step solution

01

State the condition of invertibility of the matrix using determinant

Matrix A of the order\(n \times n\)(square matrix) isinvertible if thedeterminant of the matrix is not 0 (or \(\det \left( A \right) \ne 0\)).

02

Check the invertibility of the matrix using the determinant

Consider the matrix\(A = \left( {\begin{aligned}{*{20}{c}}5&1&{ - 1}\\1&{ - 3}&{ - 2}\\0&5&3\end{aligned}} \right)\).

Compute the determinate of matrix A, as shown below:

\(\begin{aligned}{c}\det \left( A \right) = \left| {\begin{aligned}{*{20}{c}}5&1&{ - 1}\\1&{ - 3}&{ - 2}\\0&5&3\end{aligned}} \right|\\ = 5 \cdot \left| {\begin{aligned}{*{20}{c}}{ - 3}&{ - 2}\\5&3\end{aligned}} \right| - 1 \cdot \left| {\begin{aligned}{*{20}{c}}1&{ - 2}\\0&3\end{aligned}} \right| - 1 \cdot \left| {\begin{aligned}{*{20}{c}}1&{ - 3}\\0&5\end{aligned}} \right|\\ = 5 \cdot \left( { - 3\left( 3 \right) - 5\left( { - 2} \right)} \right) - \left( {1\left( 3 \right) - 0\left( { - 2} \right)} \right) - \left( {1\left( 5 \right) - 0\left( { - 3} \right)} \right)\\ = 5\left( 1 \right) - 3 - 5\\ = 2 - 5\\ = - 3\end{aligned}\)

Since \(\det \left( A \right) \ne 0\), the matrix is invertible.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free