Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: 20. (M) Use the method of Exercise 19 to guess the determinant of

\(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{1}}&{\bf{1}}& \cdots &{\bf{1}}\\{\bf{1}}&{\bf{3}}&{\bf{3}}& \cdots &{\bf{3}}\\{\bf{1}}&{\bf{3}}&{\bf{6}}& \cdots &{\bf{6}}\\ \vdots & \vdots & \vdots & \ddots & \vdots \\{\bf{1}}&{\bf{3}}&{\bf{6}}& \cdots &{{\bf{3}}\left( {n - {\bf{1}}} \right)}\end{array}} \right)\)

Justify your conjecture. (Hint: Use Exercise 14(c) and the result of Exercise 19.)

Short Answer

Expert verified

\(\det \left( {\begin{array}{*{20}{c}}1&1&1& \cdots &1\\0&2&2& \cdots &2\\0&0&3& \cdots &3\\ \vdots & \vdots & \vdots & \ddots & \vdots \\0&0&3& \cdots &{3n}\end{array}} \right) = 2\left( {{3^{n - 2}}} \right)\)

Step by step solution

01

Compute the determinants

Using the matrix program, you can obtain the following:

\(\left| {\begin{array}{*{20}{c}}1&1&1\\1&3&3\\1&3&6\end{array}} \right| = 6 = 2\left( 3 \right)\)

\(\left| {\begin{array}{*{20}{c}}1&1&1&1\\1&3&3&3\\1&3&6&6\\1&3&6&9\end{array}} \right| = 18 = 2\left( {{3^2}} \right)\)

\(\left| {\begin{array}{*{20}{c}}1&1&1&1&1\\1&3&3&3&3\\1&3&6&6&6\\1&3&6&9&9\\1&3&6&9&{12}\end{array}} \right| = 54 = 2\left( {{3^3}} \right)\)

The conjecture is

\(\left| {\begin{array}{*{20}{c}}1&1&1& \cdots &1\\1&3&3& \cdots &3\\1&3&6& \cdots &6\\ \vdots & \vdots & \vdots & \ddots & \vdots \\1&3&6& \cdots &{3\left( {n - 1} \right)}\end{array}} \right| = 2\left( {{3^{n - 2}}} \right)\).

02

Use the row-replacement operations

The matrix is

\(\left( {\begin{array}{*{20}{c}}1&1&1& \cdots &1\\1&3&3& \cdots &3\\1&3&6& \cdots &6\\ \vdots & \vdots & \vdots & \ddots & \vdots \\1&3&6& \cdots &{3\left( {n - 1} \right)}\end{array}} \right)\).

At row 2, subtract row 1 from row 2. At row 3, subtract row 1 from row 3, and so on.

\(\left( {\begin{array}{*{20}{c}}1&1&1& \cdots &1\\0&2&2& \cdots &2\\0&2&5& \cdots &5\\ \vdots & \vdots & \vdots & \ddots & \vdots \\0&2&5& \cdots &{3n - 2}\end{array}} \right)\)

At row 3, subtract row 2 from row 3. At row 4, subtract row 2 from row 4, and so on. Then

\(\left( {\begin{array}{*{20}{c}}1&1&1& \cdots &1\\0&2&2& \cdots &2\\0&0&3& \cdots &3\\ \vdots & \vdots & \vdots & \ddots & \vdots \\0&0&3& \cdots &{3n}\end{array}} \right)\)

03

Use Exercise 14(c) and Exercise 19              

The matrix is of the form \(\left( {\begin{array}{*{20}{c}}A&B\\0&D\end{array}} \right)\), where \(A = \left( {\begin{array}{*{20}{c}}1&1\\0&2\end{array}} \right)\), \(D = \left( {\begin{array}{*{20}{c}}3&3& \cdots &3\\3&6& \cdots &6\\ \vdots & \vdots & \ddots & \vdots \\3&6& \cdots &{3n}\end{array}} \right)\).

Now, using Exercise 14(c), i.e., \(\det \left( {\begin{array}{*{20}{c}}A&B\\0&D\end{array}} \right) = \left( {\det A} \right)\left( {\det D} \right)\), you get the following:

\(\begin{array}{c}\det \left( {\begin{array}{*{20}{c}}1&1&1& \cdots &1\\0&2&2& \cdots &2\\0&0&3& \cdots &3\\ \vdots & \vdots & \vdots & \ddots & \vdots \\0&0&3& \cdots &{3n}\end{array}} \right) = \left( {\det \left( {\begin{array}{*{20}{c}}1&1\\0&2\end{array}} \right)} \right)\left( {\det \left( {\begin{array}{*{20}{c}}3&3& \cdots &3\\3&6& \cdots &6\\ \vdots & \vdots & \ddots & \vdots \\3&6& \cdots &{3n}\end{array}} \right)} \right)\\ = \left( 2 \right)\left( {3\det \left[ {\begin{array}{*{20}{c}}1&1& \cdots &1\\3&6& \cdots &6\\ \vdots & \vdots & \ddots & \vdots \\3&6& \cdots &{3n}\end{array}} \right)} \right)\\ = 2\left( {{3^{n - 2}}\det \left( {\begin{array}{*{20}{c}}1&1& \cdots &1\\1&2& \cdots &2\\ \vdots & \vdots & \ddots & \vdots \\1&2& \cdots &n\end{array}} \right)} \right)\end{array}\)

From Exercise 19, \(\det \left( {\begin{array}{*{20}{c}}1&1& \cdots &1\\1&2& \cdots &2\\ \vdots & \vdots & \ddots & \vdots \\1&2& \cdots &n\end{array}} \right) = 1\). Hence, you get

\(\det \left( {\begin{array}{*{20}{c}}1&1&1& \cdots &1\\0&2&2& \cdots &2\\0&0&3& \cdots &3\\ \vdots & \vdots & \vdots & \ddots & \vdots \\0&0&3& \cdots &{3n}\end{array}} \right) = 2\left( {{3^{n - 2}}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Each equation in Exercises 1-4 illustrates a property of determinants. State the property

\(\left| {\begin{array}{*{20}{c}}{\bf{3}}&{ - {\bf{6}}}&{\bf{9}}\\{\bf{3}}&{\bf{5}}&{ - {\bf{5}}}\\{\bf{1}}&{\bf{3}}&{\bf{3}}\end{array}} \right| = {\bf{3}}\left| {\begin{array}{*{20}{c}}{\bf{1}}&{ - {\bf{2}}}&{\bf{3}}\\{\bf{3}}&{\bf{5}}&{ - {\bf{5}}}\\{\bf{1}}&{\bf{3}}&{\bf{3}}\end{array}} \right|\)

Find the determinant in Exercise 15, where \[\left| {\begin{array}{*{20}{c}}{\bf{a}}&{\bf{b}}&{\bf{c}}\\{\bf{d}}&{\bf{e}}&{\bf{f}}\\{\bf{g}}&{\bf{h}}&{\bf{i}}\end{array}} \right| = {\bf{7}}\].

15. \[\left| {\begin{array}{*{20}{c}}{\bf{a}}&{\bf{b}}&{\bf{c}}\\{\bf{d}}&{\bf{e}}&{\bf{f}}\\{{\bf{3g}}}&{{\bf{3h}}}&{{\bf{3i}}}\end{array}} \right|\]

Is it true that \(det \left( {A + B} \right) = det A + det B\)? Experiment with four pairs of random matrices as in Exercise 44, and make a conjecture.

Compute the determinant in Exercise 2 using a cofactor expansion across the first row. Also compute the determinant by a cofactor expansion down the second column.

  1. \(\left| {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{4}}&{\bf{1}}\\{\bf{5}}&{ - {\bf{3}}}&{\bf{0}}\\{\bf{2}}&{\bf{3}}&{\bf{1}}\end{aligned}} \right|\)

In Exercise 19-24, explore the effect of an elementary row operation on the determinant of a matrix. In each case, state the row operation and describe how it affects the determinant.

\(\left[ {\begin{array}{*{20}{c}}{\bf{3}}&{\bf{2}}\\{\bf{5}}&{\bf{4}}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{\bf{3}}&{\bf{2}}\\{5 + 3k}&{4 + 2k}\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free