Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Use Cramer’s rule to compute the solutions of the systems in Exercises1-6.

  1. \(\begin{array}{l}5{x_1} + 7{x_2} = 3\\2{x_1} + 4{x_2} = 1\end{array}\)

Short Answer

Expert verified

The solutions of the systems are \({x_1} = \frac{5}{6},{x_2} = - \frac{1}{6}\).

Step by step solution

01

State the matrices \({A_1}\left( b \right)\) and \({A_2}\left( b \right)\)

For any\(n \times n\)matrix A and any b in \({\mathbb{R}^n}\), let \({A_i}\left( b \right)\) be the matrix obtained from A by replacing column \(i\)by vector\({\mathop{\rm b}\nolimits} \).

\({A_i}\left( {\mathop{\rm b}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}{{a_1}}& \cdots &{\mathop{\rm b}\nolimits} & \cdots &{{a_n}}\end{array}} \right)\)

The system of equations is equivalent to\(A{\mathop{\rm x}\nolimits} = {\mathop{\rm b}\nolimits} \), where\({\mathop{\rm A}\nolimits} = \left( {\begin{array}{*{20}{c}}5&7\\2&4\end{array}} \right)\)and\({\mathop{\rm b}\nolimits} = \left( {\begin{array}{*{20}{c}}3\\1\end{array}} \right)\).

Matrices\({A_1}\left( b \right)\)and\({A_2}\left( b \right)\)are shown below:

\({A_1}\left( b \right) = \left( {\begin{array}{*{20}{c}}3&7\\1&4\end{array}} \right),{A_2}\left( b \right) = \left( {\begin{array}{*{20}{c}}5&3\\2&1\end{array}} \right)\)

02

Compute the determinant of the matrices

The determinant of matrix\(A\)is shown below:

\(\begin{array}{c}\det A = \left| {\begin{array}{*{20}{c}}5&7\\2&4\end{array}} \right|\\ = 20 - 14\\ = 6\end{array}\)

The determinant of matrix\({A_1}\left( b \right)\)is shown below:

\(\begin{array}{c}\det {A_1}\left( b \right) = \left| {\begin{array}{*{20}{c}}3&7\\1&4\end{array}} \right|\\ = 12 - 7\\ = 5\end{array}\)

The determinant of matrix\({A_2}\left( b \right)\)is shown below:

\(\begin{array}{c}\det {A_2}\left( b \right) = \left| {\begin{array}{*{20}{c}}5&3\\2&1\end{array}} \right|\\ = 5 - 6\\ = - 1\end{array}\)

Since det\(A = 6\), the system has a unique solution.

03

Compute the solution of the system

Let\(A\)be aninvertible\(n \times n\) matrix. Based on Cramer’s rule,for any b in\({\mathbb{R}^n}\), theunique solution \({\mathop{\rm x}\nolimits} \)of\(A{\mathop{\rm x}\nolimits} = {\mathop{\rm b}\nolimits} \)has entries given by

\({x_i} = \frac{{\det {A_i}\left( b \right)}}{{\det A}},\,\,\,\,i = 1,2,...,n\).

Use Cramer’s rule to compute the solution of the system.

\(\begin{array}{c}{{\mathop{\rm x}\nolimits} _1} = \frac{{\det {A_1}\left( b \right)}}{{\det A}}\\ = \frac{5}{6}\\{{\mathop{\rm x}\nolimits} _2} = \frac{{\det {A_2}\left( b \right)}}{{\det A}}\\ = - \frac{1}{6}\end{array}\)

Thus, the solutions of the systems are \({x_1} = \frac{5}{6},{x_2} = - \frac{1}{6}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free