Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Combine the methods of row reduction and cofactor expansion to compute the determinant in Exercise 12.

12. \(\left| {\begin{aligned}{*{20}{c}}{ - {\bf{1}}}&{\bf{2}}&{\bf{3}}&{\bf{0}}\\{\bf{3}}&{\bf{4}}&{\bf{3}}&{\bf{0}}\\{{\bf{11}}}&{\bf{4}}&{\bf{6}}&{\bf{6}}\\{\bf{4}}&{\bf{2}}&{\bf{4}}&{\bf{3}}\end{aligned}} \right|\)

Short Answer

Expert verified

\(\left| {\begin{aligned}{*{20}{c}}{ - 1}&2&3&0\\3&4&3&0\\{11}&4&6&6\\4&2&4&3\end{aligned}} \right| = 6\)

Step by step solution

01

Create zero in the fourth column

Add \( - 2\) times row 4 to row 3 to obtain

\(\left| {\begin{aligned}{*{20}{c}}{ - 1}&2&3&0\\3&4&3&0\\{11}&4&6&6\\4&2&4&3\end{aligned}} \right| \sim \left| {\begin{aligned}{*{20}{c}}{ - 1}&2&3&0\\3&4&3&0\\3&0&{ - 2}&0\\4&2&4&3\end{aligned}} \right|\).

02

Use cofactor expansion down the fourth column

\(\begin{aligned}{c}\left| {\begin{aligned}{*{20}{c}}{ - 1}&2&3&0\\3&4&3&0\\3&0&{ - 2}&0\\4&2&4&3\end{aligned}} \right| = 0 + 0 + 0 + 3\left| {\begin{aligned}{*{20}{c}}{ - 1}&2&3\\3&4&3\\3&0&{ - 2}\end{aligned}} \right|\\ = 3\left| {\begin{aligned}{*{20}{c}}{ - 1}&2&3\\3&4&3\\3&0&{ - 2}\end{aligned}} \right|\end{aligned}\)

03

Create zero in the second column

Add \( - 2\) times row 1 to row 2 to obtain

\(3\left| {\begin{aligned}{*{20}{c}}{ - 1}&2&3\\3&4&3\\3&0&{ - 2}\end{aligned}} \right| = 3\left| {\begin{aligned}{*{20}{c}}{ - 1}&2&3\\5&0&{ - 3}\\3&0&{ - 2}\end{aligned}} \right|\).

04

Use cofactor expansion down the second column

\(\begin{aligned}{c}3\left| {\begin{aligned}{*{20}{c}}{ - 1}&2&3\\5&0&{ - 3}\\3&0&{ - 2}\end{aligned}} \right| = 3\left( { - 2\left| {\begin{aligned}{*{20}{c}}5&{ - 3}\\3&{ - 2}\end{aligned}} \right| + 0 + 0} \right)\\ = 3\left( { - 2\left( { - 1} \right)} \right)\\ = 6\end{aligned}\)

Hence, \(\left| {\begin{aligned}{*{20}{c}}{ - 1}&2&3&0\\3&4&3&0\\{11}&4&6&6\\4&2&4&3\end{aligned}} \right| = 6\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercise 33-36, verify that \(\det EA = \left( {\det E} \right)\left( {\det A} \right)\)where E is the elementary matrix shown and \(A = \left[ {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right]\).

36. \(\left[ {\begin{aligned}{*{20}{c}}1&0\\0&k\end{aligned}} \right]\)

Question: 11. Find the area of the parallelogram determined by the points \(\left( {1,4} \right),\)\(\left( { - 1,5} \right),\)\(\left( {3,9} \right),\) and \(\left( {5,8} \right)\). How can you tell that the quadrilateral determined by the points is actually a parallelogram?

Question: In Exercises 31–36, mention an appropriate theorem in your explanation.

34. Let A and P be square matrices, with P invertible. Show that \(det\left( {PA{P^{ - {\bf{1}}}}} \right) = det{\rm{ }}A\).

Compute the determinants in Exercises 9-14 by cofactor expnasions. At each step, choose a row or column that involves the least amount of computation.

\[\left| {\begin{array}{*{20}{c}}{\bf{3}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{7}}&{ - {\bf{2}}}&{\bf{0}}&{\bf{0}}\\{\bf{2}}&{\bf{6}}&{\bf{3}}&{\bf{0}}\\{\bf{3}}&{ - {\bf{8}}}&{\bf{4}}&{ - {\bf{3}}}\end{array}} \right|\]

Find the determinant in Exercise 17, where \[\left| {\begin{aligned}{*{20}{c}}{\bf{a}}&{\bf{b}}&{\bf{c}}\\{\bf{d}}&{\bf{e}}&{\bf{f}}\\{\bf{g}}&{\bf{h}}&{\bf{i}}\end{aligned}} \right| = {\bf{7}}\].

17. \[\left| {\begin{aligned}{*{20}{c}}{{\bf{a}} + {\bf{d}}}&{{\bf{b}} + {\bf{e}}}&{{\bf{c}} + {\bf{f}}}\\{\bf{d}}&{\bf{e}}&{\bf{f}}\\{\bf{g}}&{\bf{h}}&{\bf{i}}\end{aligned}} \right|\]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free