Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Combine the methods of row reduction and cofactor expansion to compute the determinant in Exercise 11.

11. \(\left| {\begin{aligned}{*{20}{c}}{\bf{3}}&{\bf{4}}&{ - {\bf{3}}}&{ - {\bf{1}}}\\{\bf{3}}&{\bf{0}}&{\bf{1}}&{ - {\bf{3}}}\\{ - {\bf{6}}}&{\bf{0}}&{ - {\bf{4}}}&{\bf{3}}\\{\bf{6}}&{\bf{8}}&{ - {\bf{4}}}&{ - {\bf{1}}}\end{aligned}} \right|\)

Short Answer

Expert verified

\(\left| {\begin{aligned}{*{20}{c}}3&4&{ - 3}&{ - 1}\\3&0&1&{ - 3}\\{ - 6}&0&{ - 4}&3\\6&8&{ - 4}&{ - 1}\end{aligned}} \right| = - 48\)

Step by step solution

01

Create zero in the second column

Add \( - 2\) times row 1 to row 4 to obtain

\(\left| {\begin{aligned}{*{20}{c}}3&4&{ - 3}&{ - 1}\\3&0&1&{ - 3}\\{ - 6}&0&{ - 4}&3\\6&8&{ - 4}&{ - 1}\end{aligned}} \right| \sim \left| {\begin{aligned}{*{20}{c}}3&4&{ - 3}&{ - 1}\\3&0&1&{ - 3}\\{ - 6}&0&{ - 4}&3\\0&0&2&1\end{aligned}} \right|\).

02

Use cofactor expansion down the second column

\(\begin{aligned}{c}\left| {\begin{aligned}{*{20}{c}}3&4&{ - 3}&{ - 1}\\3&0&1&{ - 3}\\{ - 6}&0&{ - 4}&3\\0&0&2&1\end{aligned}} \right| = - 4\left| {\begin{aligned}{*{20}{c}}3&1&{ - 3}\\{ - 6}&{ - 4}&3\\0&2&1\end{aligned}} \right| + 0 + 0 + 0\\ = - 4\left| {\begin{aligned}{*{20}{c}}3&1&{ - 3}\\{ - 6}&{ - 4}&3\\0&2&1\end{aligned}} \right|\end{aligned}\)

03

Create zero in the first column

Add 2 times row 1 to row 2 to obtain

\( - 4\left| {\begin{aligned}{*{20}{c}}3&1&{ - 3}\\{ - 6}&{ - 4}&3\\0&2&1\end{aligned}} \right| = - 4\left| {\begin{aligned}{*{20}{c}}3&1&{ - 3}\\0&{ - 2}&{ - 3}\\0&2&1\end{aligned}} \right|\).

04

Use cofactor expansion down the first column

\(\begin{aligned}{c} - 4\left| {\begin{aligned}{*{20}{c}}3&1&{ - 3}\\0&{ - 2}&{ - 3}\\0&2&1\end{aligned}} \right| = - 4\left( {3\left| {\begin{aligned}{*{20}{c}}{ - 2}&{ - 3}\\2&1\end{aligned}} \right| + 0 + 0} \right)\\ = - 4\left( {3\left( 4 \right)} \right)\\ = - 48\end{aligned}\)

Hence, \(\left| {\begin{aligned}{*{20}{c}}3&4&{ - 3}&{ - 1}\\3&0&1&{ - 3}\\{ - 6}&0&{ - 4}&3\\6&8&{ - 4}&{ - 1}\end{aligned}} \right| = - 48\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Is it true that \(det \left( {A + B} \right) = det A + det B\)? Experiment with four pairs of random matrices as in Exercise 44, and make a conjecture.

In Exercises 27 and 28, A and B are \[n \times n\] matrices. Mark each statement True or False. Justify each answer.

27. a. A row replacement operation does not affect the determinant of a matrix.

b. The determinant of A is the product of the pivots in any echelon form U of A, multiplied by \({\left( { - {\bf{1}}} \right)^r}\), where r is the number of row interchanges made during row reduction from A to U.

c. If the columns of A are linearly dependent, then \(det\left( A \right) = 0\).

d. \(det\left( {A + B} \right) = det{\rm{ }}A + det{\rm{ }}B\).

In Exercise 19-24, explore the effect of an elementary row operation on the determinant of a matrix. In each case, state the row operation and describe how it affects the determinant.

\(\left[ {\begin{array}{*{20}{c}}a&b&c\\{\bf{3}}&{\bf{2}}&{\bf{1}}\\{\bf{4}}&{\bf{5}}&{\bf{6}}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{\bf{3}}&{\bf{2}}&{\bf{1}}\\a&b&c\\{\bf{4}}&{\bf{5}}&{\bf{6}}\end{array}} \right]\)

Question: 11. Find the area of the parallelogram determined by the points \(\left( {1,4} \right),\)\(\left( { - 1,5} \right),\)\(\left( {3,9} \right),\) and \(\left( {5,8} \right)\). How can you tell that the quadrilateral determined by the points is actually a parallelogram?

Use Exercise 25-28 to answer the questions in Exercises 31 ad 32. Give reasons for your answers.

32. What is the determinant of an elementary scaling matrix with k on the diagonal?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free