Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the determinants in Exercises 5-10 by row reduction to echelon form.

\(\left| {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{3}}&{ - {\bf{1}}}&{\bf{0}}&{ - {\bf{2}}}\\{\bf{0}}&{\bf{2}}&{ - {\bf{4}}}&{ - {\bf{2}}}&{ - {\bf{6}}}\\{ - {\bf{2}}}&{ - {\bf{6}}}&{\bf{2}}&{\bf{3}}&{{\bf{10}}}\\{\bf{1}}&{\bf{5}}&{ - {\bf{6}}}&{\bf{2}}&{ - {\bf{3}}}\\{\bf{0}}&{\bf{2}}&{ - {\bf{4}}}&{\bf{5}}&{\bf{9}}\end{array}} \right|\)

Short Answer

Expert verified

The value of the determinant is 6.

Step by step solution

01

Apply the row operation on the determinant

Apply the row operation to reduce the determinant into the echelon form.

At row 4, subtract row 1 from row 4, i.e., \({R_4} \to {R_4} - {R_1}\).

\[\left| {\begin{array}{*{20}{c}}1&3&{ - 1}&0&{ - 2}\\0&2&{ - 4}&{ - 2}&{ - 6}\\{ - 2}&{ - 6}&2&3&{10}\\0&2&{ - 5}&2&{ - 1}\\0&2&{ - 4}&5&9\end{array}} \right|\]

At row 3, multiply row 1 by 2 and add it to row 3, i.e., \({R_3} \to {R_3} + 2{R_1}\).

\[\left| {\begin{array}{*{20}{c}}1&3&{ - 1}&0&{ - 2}\\0&2&{ - 4}&{ - 2}&{ - 6}\\0&0&0&3&6\\0&2&{ - 5}&2&{ - 1}\\0&2&{ - 4}&5&9\end{array}} \right|\]

02

Apply the row operation on the determinant

Take 2 common from row 2.

\[2\left| {\begin{array}{*{20}{c}}1&3&{ - 1}&0&{ - 2}\\0&1&{ - 2}&{ - 1}&{ - 3}\\0&0&0&3&6\\0&2&{ - 5}&2&{ - 1}\\0&2&{ - 4}&5&9\end{array}} \right|\]

Interchange rows 3 and 4, i.e., \({R_3} \leftrightarrow {R_4}\).

\[ - 2\left| {\begin{array}{*{20}{c}}1&3&{ - 1}&0&{ - 2}\\0&1&{ - 2}&{ - 1}&{ - 3}\\0&2&{ - 5}&2&{ - 1}\\0&0&0&3&6\\0&2&{ - 4}&5&9\end{array}} \right|\]

03

Apply the row operation on the determinant

At row 3, multiply row 2 by 2 and subtract it from row 3, i.e., \({R_3} \to {R_3} - 2{R_2}\).

\[ - 2\left| {\begin{array}{*{20}{c}}1&3&{ - 1}&0&{ - 2}\\0&1&{ - 2}&{ - 1}&{ - 3}\\0&0&{ - 1}&4&5\\0&0&0&3&6\\0&2&{ - 4}&5&9\end{array}} \right|\]

At row 5, multiply row 2 by 2 and subtract it from row 5, i.e., \({R_5} \to {R_5} - 2{R_2}\).

\[ - 2\left| {\begin{array}{*{20}{c}}1&3&{ - 1}&0&{ - 2}\\0&1&{ - 2}&{ - 1}&{ - 3}\\0&0&{ - 1}&4&5\\0&0&0&3&6\\0&0&0&7&{15}\end{array}} \right|\]

Divide row 4 by 3, i.e., \({R_4} \to \frac{{{R_4}}}{3}\).

\[ - 6\left| {\begin{array}{*{20}{c}}1&3&{ - 1}&0&{ - 2}\\0&1&{ - 2}&{ - 1}&{ - 3}\\0&0&{ - 1}&4&5\\0&0&0&1&2\\0&0&0&7&{15}\end{array}} \right|\]

Step 4: Apply the row operation on the determinant

Multiply row 3 by \( - 1\), i.e., \({R_3} \to - {R_3}\).

\[6\left| {\begin{array}{*{20}{c}}1&3&{ - 1}&0&{ - 2}\\0&1&{ - 2}&{ - 1}&{ - 3}\\0&0&1&{ - 4}&{ - 5}\\0&0&0&1&2\\0&0&0&7&{15}\end{array}} \right|\]

At row 5, multiply row 4 by 7 and subtract it from row 5, i.e., \({R_5} \to {R_5} - 7{R_4}\).

\[6\left| {\begin{array}{*{20}{c}}1&3&{ - 1}&0&{ - 2}\\0&1&{ - 2}&{ - 1}&{ - 3}\\0&0&1&{ - 4}&{ - 5}\\0&0&0&1&2\\0&0&0&0&1\end{array}} \right|\]

04

Find the value of the determinant

For a triangular matrix, the determinant is the product of diagonal elements.

\(\begin{array}{c}\det = 6\left( 1 \right)\left( 1 \right)\left( 1 \right)\left( 1 \right)\left( 1 \right)\\ = 6\end{array}\)

So, the value of the determinant is 6.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free