Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the determinants in Exercises 5-10 by row reduction to echelon form.

\(\left| {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{3}}&{ - {\bf{1}}}&{\bf{0}}&{ - {\bf{2}}}\\{\bf{0}}&{\bf{2}}&{ - {\bf{4}}}&{ - {\bf{2}}}&{ - {\bf{6}}}\\{ - {\bf{2}}}&{ - {\bf{6}}}&{\bf{2}}&{\bf{3}}&{{\bf{10}}}\\{\bf{1}}&{\bf{5}}&{ - {\bf{6}}}&{\bf{2}}&{ - {\bf{3}}}\\{\bf{0}}&{\bf{2}}&{ - {\bf{4}}}&{\bf{5}}&{\bf{9}}\end{array}} \right|\)

Short Answer

Expert verified

The value of the determinant is 6.

Step by step solution

01

Apply the row operation on the determinant

Apply the row operation to reduce the determinant into the echelon form.

At row 4, subtract row 1 from row 4, i.e., \({R_4} \to {R_4} - {R_1}\).

\[\left| {\begin{array}{*{20}{c}}1&3&{ - 1}&0&{ - 2}\\0&2&{ - 4}&{ - 2}&{ - 6}\\{ - 2}&{ - 6}&2&3&{10}\\0&2&{ - 5}&2&{ - 1}\\0&2&{ - 4}&5&9\end{array}} \right|\]

At row 3, multiply row 1 by 2 and add it to row 3, i.e., \({R_3} \to {R_3} + 2{R_1}\).

\[\left| {\begin{array}{*{20}{c}}1&3&{ - 1}&0&{ - 2}\\0&2&{ - 4}&{ - 2}&{ - 6}\\0&0&0&3&6\\0&2&{ - 5}&2&{ - 1}\\0&2&{ - 4}&5&9\end{array}} \right|\]

02

Apply the row operation on the determinant

Take 2 common from row 2.

\[2\left| {\begin{array}{*{20}{c}}1&3&{ - 1}&0&{ - 2}\\0&1&{ - 2}&{ - 1}&{ - 3}\\0&0&0&3&6\\0&2&{ - 5}&2&{ - 1}\\0&2&{ - 4}&5&9\end{array}} \right|\]

Interchange rows 3 and 4, i.e., \({R_3} \leftrightarrow {R_4}\).

\[ - 2\left| {\begin{array}{*{20}{c}}1&3&{ - 1}&0&{ - 2}\\0&1&{ - 2}&{ - 1}&{ - 3}\\0&2&{ - 5}&2&{ - 1}\\0&0&0&3&6\\0&2&{ - 4}&5&9\end{array}} \right|\]

03

Apply the row operation on the determinant

At row 3, multiply row 2 by 2 and subtract it from row 3, i.e., \({R_3} \to {R_3} - 2{R_2}\).

\[ - 2\left| {\begin{array}{*{20}{c}}1&3&{ - 1}&0&{ - 2}\\0&1&{ - 2}&{ - 1}&{ - 3}\\0&0&{ - 1}&4&5\\0&0&0&3&6\\0&2&{ - 4}&5&9\end{array}} \right|\]

At row 5, multiply row 2 by 2 and subtract it from row 5, i.e., \({R_5} \to {R_5} - 2{R_2}\).

\[ - 2\left| {\begin{array}{*{20}{c}}1&3&{ - 1}&0&{ - 2}\\0&1&{ - 2}&{ - 1}&{ - 3}\\0&0&{ - 1}&4&5\\0&0&0&3&6\\0&0&0&7&{15}\end{array}} \right|\]

Divide row 4 by 3, i.e., \({R_4} \to \frac{{{R_4}}}{3}\).

\[ - 6\left| {\begin{array}{*{20}{c}}1&3&{ - 1}&0&{ - 2}\\0&1&{ - 2}&{ - 1}&{ - 3}\\0&0&{ - 1}&4&5\\0&0&0&1&2\\0&0&0&7&{15}\end{array}} \right|\]

Step 4: Apply the row operation on the determinant

Multiply row 3 by \( - 1\), i.e., \({R_3} \to - {R_3}\).

\[6\left| {\begin{array}{*{20}{c}}1&3&{ - 1}&0&{ - 2}\\0&1&{ - 2}&{ - 1}&{ - 3}\\0&0&1&{ - 4}&{ - 5}\\0&0&0&1&2\\0&0&0&7&{15}\end{array}} \right|\]

At row 5, multiply row 4 by 7 and subtract it from row 5, i.e., \({R_5} \to {R_5} - 7{R_4}\).

\[6\left| {\begin{array}{*{20}{c}}1&3&{ - 1}&0&{ - 2}\\0&1&{ - 2}&{ - 1}&{ - 3}\\0&0&1&{ - 4}&{ - 5}\\0&0&0&1&2\\0&0&0&0&1\end{array}} \right|\]

04

Find the value of the determinant

For a triangular matrix, the determinant is the product of diagonal elements.

\(\begin{array}{c}\det = 6\left( 1 \right)\left( 1 \right)\left( 1 \right)\left( 1 \right)\left( 1 \right)\\ = 6\end{array}\)

So, the value of the determinant is 6.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 39 and 40, \(A\) is an \(n \times n\) matrix. Mark each statement True or False. Justify each answer.

39.

a. An \(n \times n\) determinant is defined by determinants of \(\left( {n - 1} \right) \times \left( {n - 1} \right)\) submatrices.

b. The \(\left( {i,j} \right)\)-cofactor of a matrix \(A\) is the matrix \({A_{ij}}\) obtained by deleting from A its \(i{\mathop{\rm th}\nolimits} \) row and \[j{\mathop{\rm th}\nolimits} \]column.

Compute the determinant in Exercise 10 by cofactor expansions. At each step, choose a row or column that involves the least amount of computation.

10. \(\left| {\begin{array}{*{20}{c}}{\bf{1}}&{ - {\bf{2}}}&{\bf{5}}&{\bf{2}}\\{\bf{0}}&{\bf{0}}&{\bf{3}}&{\bf{0}}\\{\bf{2}}&{ - {\bf{4}}}&{ - {\bf{3}}}&{\bf{5}}\\{\bf{2}}&{\bf{0}}&{\bf{3}}&{\bf{5}}\end{array}} \right|\)

Find the determinants in Exercises 5-10 by row reduction to echelon form.

\(\left| {\begin{aligned}{*{20}{c}}{\bf{3}}&{\bf{3}}&{ - {\bf{3}}}\\{\bf{3}}&{\bf{4}}&{ - {\bf{4}}}\\{\bf{2}}&{ - {\bf{3}}}&{ - {\bf{5}}}\end{aligned}} \right|\)

Combine the methods of row reduction and cofactor expansion to compute the determinant in Exercise 12.

12. \(\left| {\begin{aligned}{*{20}{c}}{ - {\bf{1}}}&{\bf{2}}&{\bf{3}}&{\bf{0}}\\{\bf{3}}&{\bf{4}}&{\bf{3}}&{\bf{0}}\\{{\bf{11}}}&{\bf{4}}&{\bf{6}}&{\bf{6}}\\{\bf{4}}&{\bf{2}}&{\bf{4}}&{\bf{3}}\end{aligned}} \right|\)

Question: In Exercises 31โ€“36, mention an appropriate theorem in your explanation.

34. Let A and P be square matrices, with P invertible. Show that \(det\left( {PA{P^{ - {\bf{1}}}}} \right) = det{\rm{ }}A\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free