Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Compute the determinant in Exercise 10 by cofactor expansions. At each step, choose a row or column that involves the least amount of computation.

10. \(\left| {\begin{array}{*{20}{c}}{\bf{1}}&{ - {\bf{2}}}&{\bf{5}}&{\bf{2}}\\{\bf{0}}&{\bf{0}}&{\bf{3}}&{\bf{0}}\\{\bf{2}}&{ - {\bf{4}}}&{ - {\bf{3}}}&{\bf{5}}\\{\bf{2}}&{\bf{0}}&{\bf{3}}&{\bf{5}}\end{array}} \right|\)

Short Answer

Expert verified

\(\left| {\begin{array}{*{20}{c}}1&{ - 2}&5&2\\0&0&3&0\\2&{ - 4}&{ - 3}&5\\2&0&3&5\end{array}} \right| = 12\)

Step by step solution

01

Write the determinant formula

The determinant computed by cofactor expansion across the ith row is

\(\det A = {a_{i1}}{C_{i1}} + {a_{i2}}{C_{i2}} + \cdots + {a_{in}}{C_{in}}\).

Here, A is an \(n \times n\) matrix, and \({C_{ij}} = {\left( { - 1} \right)^{i + j}}{A_{ij}}\).

For the least amount of computation, choose a row or column that has the maximum entries as zero.

02

Use cofactor expansion across the second row

\(\begin{array}{c}\left| {\begin{array}{*{20}{c}}1&{ - 2}&5&2\\0&0&3&0\\2&{ - 4}&{ - 3}&5\\2&0&3&5\end{array}} \right| = 0 + 0 - 3\left| {\begin{array}{*{20}{c}}1&{ - 2}&2\\2&{ - 4}&5\\2&0&5\end{array}} \right| + 0\\ = - 3\left| {\begin{array}{*{20}{c}}1&{ - 2}&2\\2&{ - 4}&5\\2&0&5\end{array}} \right|\end{array}\)

03

Use cofactor expansion across the third row

\(\begin{array}{c}\left| {\begin{array}{*{20}{c}}1&{ - 2}&5&2\\0&0&3&0\\2&{ - 4}&{ - 3}&5\\2&0&3&5\end{array}} \right| = - 3\left| {\begin{array}{*{20}{c}}1&{ - 2}&2\\2&{ - 4}&5\\2&0&5\end{array}} \right|\\ = - 3\left( {2\left| {\begin{array}{*{20}{c}}{ - 2}&2\\{ - 4}&5\end{array}} \right| + 0 + 5\left| {\begin{array}{*{20}{c}}1&{ - 2}\\2&{ - 4}\end{array}} \right|} \right)\\ = - 3\left( {2\left( { - 2} \right) + 5\left( 0 \right)} \right)\\ = - 3\left( { - 4} \right)\\ = 12\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Each equation in Exercises 1-4 illustrates a property of determinants. State the property

\(\left| {\begin{array}{*{20}{c}}{\bf{3}}&{ - {\bf{6}}}&{\bf{9}}\\{\bf{3}}&{\bf{5}}&{ - {\bf{5}}}\\{\bf{1}}&{\bf{3}}&{\bf{3}}\end{array}} \right| = {\bf{3}}\left| {\begin{array}{*{20}{c}}{\bf{1}}&{ - {\bf{2}}}&{\bf{3}}\\{\bf{3}}&{\bf{5}}&{ - {\bf{5}}}\\{\bf{1}}&{\bf{3}}&{\bf{3}}\end{array}} \right|\)

Compute the determinant in Exercise 4 using a cofactor expansion across the first row. Also compute the determinant by a cofactor expansion down the second column.

4. \(\left| {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{2}}&{\bf{4}}\\{\bf{3}}&{\bf{1}}&{\bf{1}}\\{\bf{2}}&{\bf{4}}&{\bf{2}}\end{aligned}} \right|\)

Find the determinants in Exercises 5-10 by row reduction to echelon form.

\(\left| {\begin{array}{*{20}{c}}{\bf{1}}&{ - {\bf{1}}}&{ - {\bf{3}}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{5}}&{\bf{4}}\\{ - {\bf{1}}}&{\bf{0}}&{\bf{5}}&{\bf{3}}\\{\bf{3}}&{ - {\bf{3}}}&{ - {\bf{2}}}&{\bf{3}}\end{array}} \right|\)

The expansion of a \({\bf{3}} \times {\bf{3}}\) determinant can be remembered by the following device. Write a second type of the first two columns to the right of the matrix, and compute the determinant by multiplying entries on six diagonals.

Add the downward diagonal products and subtract the upward products. Use this method to compute the determinants in Exercises 15-18. Warning: This trick does not generalize in any reasonable way to \({\bf{4}} \times {\bf{4}}\) or larger matrices.

15. \(\left| {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}&{\bf{4}}\\{\bf{2}}&{\bf{3}}&{\bf{2}}\\{\bf{0}}&{\bf{5}}&{ - {\bf{2}}}\end{array}} \right|\)

In Exercise 19-24, explore the effect of an elementary row operation on the determinant of a matrix. In each case, state the row operation and describe how it affects the determinant.

\(\left[ {\begin{array}{*{20}{c}}a&b&c\\{\bf{3}}&{\bf{2}}&{\bf{1}}\\{\bf{4}}&{\bf{5}}&{\bf{6}}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{\bf{3}}&{\bf{2}}&{\bf{1}}\\a&b&c\\{\bf{4}}&{\bf{5}}&{\bf{6}}\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free