Chapter 8: Problem 5
It follows from Exercise 4 that if, in the \(M / M / 1\) model, \(W_{Q}^{*}\) is the amount of time that a customer spends waiting in queue, then $$ W_{Q}^{*}=\left\\{\begin{array}{ll} 0, & \text { with probability } 1-\lambda / \mu \\ \operatorname{Exp}(\mu-\lambda), & \text { with probability } \lambda / \mu \end{array}\right. $$ where \(\operatorname{Exp}(\mu-\lambda)\) is an exponential random variable with rate \(\mu-\lambda .\) Using this, find \(\operatorname{Var}\left(W_{Q}^{*}\right)\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.