Chapter 8: Problem 39
Consider an \(M / G / 1\) system in which the first customer in a busy period has the service distribution \(G_{1}\) and all others have distribution \(G_{2}\). Let \(C\) denote the number of customers in a busy period, and let \(S\) denote the service time of a customer chosen at random. Argue that (a) \(a_{0}=P_{0}=1-\lambda E[S]\) (b) \(E[S]=a_{0} E\left[S_{1}\right]+\left(1-a_{0}\right) E\left[S_{2}\right]\) where \(S_{i}\) has distribution \(G_{i}\). (c) Use (a) and (b) to show that \(E[B]\), the expected length of a busy period, is given by $$ E[B]=\frac{E\left[S_{1}\right]}{1-\lambda E\left[S_{2}\right]} $$ (d) Find \(E[C]\).