Chapter 7: Problem 6
Consider a renewal process \(\\{N(t), t \geqslant 0\\}\) having a gamma \((r, \lambda)\) interarrival distribution. That is, the interarrival density is $$ f(x)=\frac{\lambda e^{-\lambda x}(\lambda x)^{r-1}}{(r-1) !}, \quad x>0 $$ (a) Show that $$ P[N(t) \geqslant n]=\sum_{i=n r}^{\infty} \frac{e^{-\lambda t}(\lambda t)^{i}}{i !} $$ (b) Show that $$ m(t)=\sum_{i=r}^{\infty}\left[\frac{i}{r}\right] \frac{e^{-\lambda t}(\lambda t)^{i}}{i !} $$ where \([i / r]\) is the largest integer less than or equal to \(i / r\). Hint: Use the relationship between the gamma \((r, \lambda)\) distribution and the sum of \(r\) independent exponentials with rate \(\lambda\) to define \(N(t)\) in terms of a Poisson process with rate \(\lambda\).