Chapter 7: Problem 53
Write a program to approximate \(m(t)\) for the interarrival distribution \(F * G\), where \(F\) is exponential with mean 1 and \(G\) is exponential with mean \(3 .\)
Chapter 7: Problem 53
Write a program to approximate \(m(t)\) for the interarrival distribution \(F * G\), where \(F\) is exponential with mean 1 and \(G\) is exponential with mean \(3 .\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEach time a certain machine breaks down it is replaced by a new one of the same type. In the long run, what percentage of time is the machine in use less than one year old if the life distribution of a machine is (a) uniformly distributed over \((0,2)\) ? (b) exponentially distributed with mean \(1 ?\)
In Example \(7.6\), suppose that potential customers arrive in accordance with a renewal process having interarrival distribution \(F\). Would the number of events by time \(t\) constitute a (possibly delayed) renewal process if an event corresponds to a customer (a) entering the bank? (b) leaving the bank? What if \(F\) were exponential?
Mr. Smith works on a temporary basis. The mean length of each job he gets is three months. If the amount of time he spends between jobs is exponentially distributed with mean 2, then at what rate does \(\mathrm{Mr}\). Smith get new jobs?
There are three machines, all of which are needed for a system to work. Machine \(i\) functions for an exponential time with rate \(\lambda_{i}\) before it fails, \(i=1,2,3 .\) When a machine fails, the system is shut down and repair begins on the failed machine. The time to fix machine 1 is exponential with rate \(5 ;\) the time to fix machine 2 is uniform on \((0,4) ;\) and the time to fix machine 3 is a gamma random variable with parameters \(n=3\) and \(\lambda=2 .\) Once a failed machine is repaired, it is as good as new and all machines are restarted. (a) What proportion of time is the system working? (b) What proportion of time is machine 1 being repaired? (c) What proportion of time is machine 2 in a state of suspended animation (that is, neither working nor being repaired)?
An airport shuttle bus picks up all passengers waiting at a bus stop and drops them off at the airport terminal; it then returns to the stop and repeats the process. The times between returns to the stop are independent random variables with distribution \(F\), mean \(\mu\), and variance \(\sigma^{2} .\) Passengers arrive at the bus stop in accordance with a Poisson process with rate \(\lambda\). Suppose the bus has just left the stop, and let \(X\) denote the number of passengers it picks up when it returns. (a) Find \(E[X]\). (b) Find \(\operatorname{Var}(X)\). (c) At what rate does the shuttle bus arrive at the terminal without any passengers? Suppose that each passenger that has to wait at the bus stop more than \(c\) time units writes an angry letter to the shuttle bus manager. (d) What proportion of passengers write angry letters? (e) How does your answer in part (d) relate to \(F_{e}(x) ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.