Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider a semi-Markov process in which the amount of time that the process spends in each state before making a transition into a different state is exponentially distributed. What kind of process is this?

Short Answer

Expert verified
The given semi-Markov process is a Markov process. This is because the holding times are exponentially distributed, which imparts the memoryless property to the process. As a result, the future state depends only on the current state, and the transitions are independent of the past states.

Step by step solution

01

Understanding semi-Markov process

A semi-Markov process is a stochastic process where the time spent in a state and the probability of transitioning to another state depend on the previous state and the duration spent in that state.
02

Examine given condition

The given condition is that the process spends an exponentially distributed amount of time in each state before transitioning to another state. The exponential distribution is memoryless, meaning that the future behavior of the system does not depend on its past if the holding times have exponential distribution.
03

Identify the type of process

As the process is memoryless due to the exponentially distributed holding times, it does not depend on the duration spent in the current state. Hence, the given semi-Markov process is actually a Markov process. The future state depends only on the current state, and the transitions are independent of the past states. So, the process is a Markov process.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a renewal process having the gamma \((n, \lambda)\) interarrival distribution, and let \(Y(t)\) denote the time from \(t\) until the next renewal. Use the theory of semi-Markov processes to show that $$ \lim _{t \rightarrow \infty} P(Y(t)

If the mean-value function of the renewal process \(\\{N(t), t \geqslant 0\\}\) is given by \(m(t)=\) \(t / 2, t \geqslant 0\), what is \(P[N(5)=0\\} ?\)

Let \(X_{1}, X_{2}, \ldots\) be a sequence of independent random variables. The nonnegative integer valued random variable \(N\) is said to be a stopping time for the sequence if the event \(\\{N=n\\}\) is independent of \(X_{n+1}, X_{n+2}, \ldots .\) The idea being that the \(X_{i}\) are observed one at a time-first \(X_{1}\), then \(X_{2}\), and so on-and \(N\) represents the number observed when we stop. Hence, the event \(\\{N=n\\}\) corresponds to stopping after having observed \(X_{1}, \ldots, X_{n}\) and thus must be independent of the values of random variables yet to come, namely, \(X_{n+1}, X_{n+2}, \ldots\) (a) Let \(X_{1}, X_{2}, \ldots\) be independent with $$ P\left[X_{i}=1\right\\}=p=1-P\left(X_{i}=0\right\\}, \quad i \geqslant 1 $$ Define $$ \begin{aligned} &N_{1}=\min \left[n: X_{1}+\cdots+X_{n}=5\right\\} \\ &N_{2}=\left\\{\begin{array}{ll} 3, & \text { if } X_{1}=0 \\ 5, & \text { if } X_{1}=1 \end{array}\right. \\ &N_{3}=\left\\{\begin{array}{ll} 3, & \text { if } X_{4}=0 \\ 2, & \text { if } X_{4}=1 \end{array}\right. \end{aligned} $$ Which of the \(N_{i}\) are stopping times for the sequence \(X_{1}, \ldots ?\) An important result, known as Wald's equation states that if \(X_{1}, X_{2}, \ldots\) are independent and identically distributed and have a finite mean \(E(X)\), and if \(N\) is a stopping time for this sequence having a finite mean, then $$ E\left[\sum_{i=1}^{N} X_{i}\right]=E[N] E[X] $$ To prove Wald's equation, let us define the indicator variables \(I_{i}, i \geqslant 1\) by $$ I_{i}=\left\\{\begin{array}{ll} 1, & \text { if } i \leqslant N \\ 0, & \text { if } i>N \end{array}\right. $$ (b) Show that $$ \sum_{i=1}^{N} X_{i}=\sum_{i=1}^{\infty} X_{i} I_{i} $$ From part (b) we see that $$ \begin{aligned} E\left[\sum_{i=1}^{N} X_{i}\right] &=E\left[\sum_{i=1}^{\infty} X_{i} I_{i}\right] \\ &=\sum_{i=1}^{\infty} E\left[X_{i} I_{i}\right] \end{aligned} $$ where the last equality assumes that the expectation can be brought inside the summation (as indeed can be rigorously proven in this case). (c) Argue that \(X_{i}\) and \(I_{i}\) are independent. Hint: \(I_{i}\) equals 0 or 1 depending on whether or not we have yet stopped after observing which random variables? (d) From part (c) we have $$ E\left[\sum_{i=1}^{N} X_{i}\right]=\sum_{i=1}^{\infty} E[X] E\left[I_{i}\right] $$ Complete the proof of Wald's equation. (e) What does Wald's equation tell us about the stopping times in part (a)?

Satellites are launched according to a Poisson process with rate \(\lambda .\) Each satellite will, independently, orbit the earth for a random time having distribution \(F\). Let \(X(t)\) denote the number of satellites orbiting at time \(t\). (a) Determine \(P\\{X(t)=k\\}\). Hint: Relate this to the \(M / G / \infty\) queue. (b) If at least one satellite is orbiting, then messages can be transmitted and we say that the system is functional. If the first satellite is orbited at time \(t=0\), determine the expected time that the system remains functional. Hint: \(\quad\) Make use of part (a) when \(k=0\).

For the renewal process whose interarrival times are uniformly distributed over \((0,1)\), determine the expected time from \(t=1\) until the next renewal.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free