Chapter 7: Problem 35
Satellites are launched according to a Poisson process with rate \(\lambda .\) Each satellite will, independently, orbit the earth for a random time having distribution \(F\). Let \(X(t)\) denote the number of satellites orbiting at time \(t\). (a) Determine \(P\\{X(t)=k\\}\). Hint: Relate this to the \(M / G / \infty\) queue. (b) If at least one satellite is orbiting, then messages can be transmitted and we say that the system is functional. If the first satellite is orbited at time \(t=0\), determine the expected time that the system remains functional. Hint: \(\quad\) Make use of part (a) when \(k=0\).