Chapter 7: Problem 31
If \(A(t)\) and \(Y(t)\) are, respectively, the age and the excess at time \(t\) of a renewal process having an interarrival distribution \(F\), calculate $$ P\\{Y(t)>x \mid A(t)=s\\} $$
Chapter 7: Problem 31
If \(A(t)\) and \(Y(t)\) are, respectively, the age and the excess at time \(t\) of a renewal process having an interarrival distribution \(F\), calculate $$ P\\{Y(t)>x \mid A(t)=s\\} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeThree marksmen take turns shooting at a target. Marksman 1 shoots until he misses, then marksman 2 begins shooting until he misses, then marksman 3 until he misses, and then back to marksman 1, and so on. Each time marksman \(i\) fires he hits the target, independently of the past, with probability \(P_{i}, i=1,2,3 .\) Determine the proportion of time, in the long run, that each marksman shoots.
An airport shuttle bus picks up all passengers waiting at a bus stop and drops them off at the airport terminal; it then returns to the stop and repeats the process. The times between returns to the stop are independent random variables with distribution \(F\), mean \(\mu\), and variance \(\sigma^{2} .\) Passengers arrive at the bus stop in accordance with a Poisson process with rate \(\lambda\). Suppose the bus has just left the stop, and let \(X\) denote the number of passengers it picks up when it returns. (a) Find \(E[X]\). (b) Find \(\operatorname{Var}(X)\). (c) At what rate does the shuttle bus arrive at the terminal without any passengers? Suppose that each passenger that has to wait at the bus stop more than \(c\) time units writes an angry letter to the shuttle bus manager. (d) What proportion of passengers write angry letters? (e) How does your answer in part (d) relate to \(F_{e}(x) ?\)
Let \(h(x)=P\left(\sum_{i=1}^{T} X_{i}>x\right\\}\) where \(X_{1}, X_{2}, \ldots\) are independent random variables having distribution function \(F_{e}\) and \(T\) is independent of the \(X_{i}\) and has probability mass function \(P[T=n\\}=\rho^{n}(1-\rho), n \geqslant 0 .\) Show that \(h(x)\) satisfies Equation (7.53). Hint: Start by conditioning on whether \(T=0\) or \(T>0\).
Each time a certain machine breaks down it is replaced by a new one of the same type. In the long run, what percentage of time is the machine in use less than one year old if the life distribution of a machine is (a) uniformly distributed over \((0,2)\) ? (b) exponentially distributed with mean \(1 ?\)
Consider a renewal process having the gamma \((n, \lambda)\) interarrival
distribution, and let \(Y(t)\) denote the time from \(t\) until the next renewal.
Use the theory of semi-Markov processes to show that
$$
\lim _{t \rightarrow \infty} P(Y(t)
What do you think about this solution?
We value your feedback to improve our textbook solutions.