Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider a renewal process with mean interarrival time \(\mu .\) Suppose that each event of this process is independently "counted" with probability \(p\). Let \(N_{C}(t)\) denote the number of counted events by time \(t, t>0\). (a) Is \(N_{C}(t), t \geqslant 0\) a renewal process? (b) What is \(\lim _{t \rightarrow \infty} N_{C}(t) / t ?\)

Short Answer

Expert verified
(a) No, \(N_{C}(t), t \geqslant 0\) is not a renewal process since the interarrival times of counted events are not independent and identically distributed. (b) The limit \(\lim_{t \rightarrow \infty} N_{C}(t) / t\) is equal to the rate of counted events, which is \(p / \mu\).

Step by step solution

01

Define the renewal process

A renewal process is a point process that has the property of independent and identically distributed (IID) interarrival times. Specifically, denote \(T_i\) as the interarrival time between the \(i\)-th and the \((i-1)\)-th event. Then, if \((T_1, T_2, \ldots)\) is a sequence of IID random variables and \(T_i \geq 0\), we have a renewal process.
02

Check if \(N_{C}(t), t \geqslant 0\) is a renewal process

Now we need to check if \(N_{C}(t), t\geq 0\) is a renewal process. Let \(T_i^c\) be the interarrival time between the \(i\)-th and the \((i-1)\)-th counted events. Since each event is independently counted with probability \(p\), the distribution of \(T_i^c\) is the sum of \(N\) IID random variables with distribution \(T_i\), where \(N\) is a geometric random variable with success probability \(p\). Thus, the interarrival times \(T_i^c\) are Not independent and identically distributed, which means that \(N_{C}(t), t\geq 0\) is not a renewal process. Answer (a): No, \(N_{C}(t), t \geqslant 0\) is not a renewal process.
03

Calculate the rate of counted events

Since each event of the original renewal process happens with mean inter-event time \(\mu\), the rate (number of events per unit time) of the process is \(1/\mu\). The rate for the counted events is \(p / \mu\) because the original events of the renewal process are independently counted with probability \(p\).
04

Find the limit \(\lim _{t \rightarrow \infty} N_{C}(t) / t\)

The limit \(\lim _{t \rightarrow \infty} N_{C}(t) / t\) represents the long-term average number of counted events per unit time when the event-counting is applied to the renewal process. This limit is equal to the rate of counted events, which is calculated in Step 3. Answer (b): The limit of \(\lim_{t \rightarrow \infty} N_{C}(t) / t\) is equal to the rate of counted events, which is \(p / \mu\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a train station to which customers arrive in accordance with a Poisson process having rate \(\lambda\). A train is summoned whenever there are \(N\) customers waiting in the station, but it takes \(K\) units of time for the train to arrive at the station. When it arrives, it picks up all waiting customers. Assuming that the train station incurs a cost at a rate of \(n c\) per unit time whenever there are \(n\) customers present, find the long-run average cost.

Wald's equation can also be proved by using renewal reward processes. Let \(N\) be a stopping time for the sequence of independent and identically distributed random variables \(X_{i}, i \geqslant 1\) (a) Let \(N_{1}=N\). Argue that the sequence of random variables \(X_{N_{1}+1}, X_{N_{1}+2}, \ldots\) is independent of \(X_{1}, \ldots, X_{N}\) and has the same distribution as the original sequence \(X_{i}, i \geqslant 1\) Now treat \(X_{N_{1}+1}, X_{N_{1}+2}, \ldots\) as a new sequence, and define a stopping time \(\mathrm{N}_{2}\) for this sequence that is defined exactly as \(\mathrm{N}_{1}\) is on the original sequence. (For instance, if \(N_{1}=\min \left(n: X_{n}>0\right\\}\), then \(\left.N_{2}=\min \left[n: X_{N_{1}+n}>0\right\\} .\right)\) Similarly, define a stopping time \(N_{3}\) on the sequence \(X_{N_{1}+N_{2}+1}, X_{N_{1}+N_{2}+2}, \ldots\) that is identically defined on this sequence as \(N_{1}\) is on the original sequence, and so on. (b) Is the reward process in which \(X_{i}\) is the reward earned during period \(i\) a renewal Ireward process? If so, what is the length of the successive cycles? (c) Derive an expression for the average reward per unit time. (d) Use the strong law of large numbers to derive a second expression for the average reward per unit time. (e) Conclude Wald's equation.

Let \(X_{1}, X_{2}, \ldots\) be a sequence of independent random variables. The nonnegative integer valued random variable \(N\) is said to be a stopping time for the sequence if the event \(\\{N=n\\}\) is independent of \(X_{n+1}, X_{n+2}, \ldots .\) The idea being that the \(X_{i}\) are observed one at a time-first \(X_{1}\), then \(X_{2}\), and so on-and \(N\) represents the number observed when we stop. Hence, the event \(\\{N=n\\}\) corresponds to stopping after having observed \(X_{1}, \ldots, X_{n}\) and thus must be independent of the values of random variables yet to come, namely, \(X_{n+1}, X_{n+2}, \ldots\) (a) Let \(X_{1}, X_{2}, \ldots\) be independent with $$ P\left[X_{i}=1\right\\}=p=1-P\left(X_{i}=0\right\\}, \quad i \geqslant 1 $$ Define $$ \begin{aligned} &N_{1}=\min \left[n: X_{1}+\cdots+X_{n}=5\right\\} \\ &N_{2}=\left\\{\begin{array}{ll} 3, & \text { if } X_{1}=0 \\ 5, & \text { if } X_{1}=1 \end{array}\right. \\ &N_{3}=\left\\{\begin{array}{ll} 3, & \text { if } X_{4}=0 \\ 2, & \text { if } X_{4}=1 \end{array}\right. \end{aligned} $$ Which of the \(N_{i}\) are stopping times for the sequence \(X_{1}, \ldots ?\) An important result, known as Wald's equation states that if \(X_{1}, X_{2}, \ldots\) are independent and identically distributed and have a finite mean \(E(X)\), and if \(N\) is a stopping time for this sequence having a finite mean, then $$ E\left[\sum_{i=1}^{N} X_{i}\right]=E[N] E[X] $$ To prove Wald's equation, let us define the indicator variables \(I_{i}, i \geqslant 1\) by $$ I_{i}=\left\\{\begin{array}{ll} 1, & \text { if } i \leqslant N \\ 0, & \text { if } i>N \end{array}\right. $$ (b) Show that $$ \sum_{i=1}^{N} X_{i}=\sum_{i=1}^{\infty} X_{i} I_{i} $$ From part (b) we see that $$ \begin{aligned} E\left[\sum_{i=1}^{N} X_{i}\right] &=E\left[\sum_{i=1}^{\infty} X_{i} I_{i}\right] \\ &=\sum_{i=1}^{\infty} E\left[X_{i} I_{i}\right] \end{aligned} $$ where the last equality assumes that the expectation can be brought inside the summation (as indeed can be rigorously proven in this case). (c) Argue that \(X_{i}\) and \(I_{i}\) are independent. Hint: \(I_{i}\) equals 0 or 1 depending on whether or not we have yet stopped after observing which random variables? (d) From part (c) we have $$ E\left[\sum_{i=1}^{N} X_{i}\right]=\sum_{i=1}^{\infty} E[X] E\left[I_{i}\right] $$ Complete the proof of Wald's equation. (e) What does Wald's equation tell us about the stopping times in part (a)?

Suppose that the interarrival distribution for a renewal process is Poisson distributed with mean \(\mu .\) That is, suppose $$ P\left\\{X_{n}=k\right\\}=e^{-\mu} \frac{\mu^{k}}{k !}, \quad k=0,1, \ldots $$ (a) Find the distribution of \(S_{n}\). (b) Calculate \(P\\{N(t)=n\\}\).

Each time a certain machine breaks down it is replaced by a new one of the same type. In the long run, what percentage of time is the machine in use less than one year old if the life distribution of a machine is (a) uniformly distributed over \((0,2)\) ? (b) exponentially distributed with mean \(1 ?\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free