Chapter 6: Problem 39
Let \(O(t)\) be the occupation time for state 0 in the two-state continuous-time Markov chain. Find \(E[O(t) \mid X(0)=1]\).
Chapter 6: Problem 39
Let \(O(t)\) be the occupation time for state 0 in the two-state continuous-time Markov chain. Find \(E[O(t) \mid X(0)=1]\).
All the tools & learning materials you need for study success - in one app.
Get started for freeA population of organisms consists of both male and female members. In a small colony any particular male is likely to mate with any particular female in any time interval of length \(h\), with probability \(\lambda h+o(h) .\) Each mating immediately produces one offspring, equally likely to be male or female. Let \(N_{1}(t)\) and \(N_{2}(t)\) denote the number of males and females in the population at \(t .\) Derive the parameters of the continuous-time Markov chain \(\left\\{N_{1}(t), N_{2}(t)\right\\}\), i.e., the \(v_{i}, P_{i j}\) of Section \(6.2\).
Potential customers arrive at a single-server station in accordance with a Poisson process with rate \(\lambda .\) However, if the arrival finds \(n\) customers already in the station, then he will enter the system with probability \(\alpha_{n}\). Assuming an exponential service rate \(\mu\), set this up as a birth and death process and determine the birth and death rates.
Consider two \(\mathrm{M} / \mathrm{M} / 1\) queues with respective parameters \(\lambda_{i}, \mu_{i}, i=1,2 .\) Suppose they share a common waiting room that can hold at most three customers. That is, whenever an arrival finds her server busy and three customers in the waiting room, she goes away. Find the limiting probability that there will be \(n\) queue 1 customers and \(m\) queue 2 customers in the system. Hint: Use the results of Exercise 28 together with the concept of truncation.
The following problem arises in molecular biology. The surface of a bacterium consists of several sites at which foreign molecules-some acceptable and some not-become attached. We consider a particular site and assume that molecules arrive at the site according to a Poisson process with parameter \(\lambda\). Among these molecules a proportion \(\alpha\) is acceptable. Unacceptable molecules stay at the site for a length of time that is exponentially distributed with parameter \(\mu_{1}\), whereas an acceptable molecule remains at the site for an exponential time with rate \(\mu_{2}\). An arriving molecule will become attached only if the site is free of other molecules. What percentage of time is the site occupied with an acceptable (unacceptable) molecule?
A small barbershop, operated by a single barber, has room for at most two customers. Potential customers arrive at a Poisson rate of three per hour, and the successive service times are independent exponential random variables with mean \(\frac{1}{4}\) hour. (a) What is the average number of customers in the shop? (b) What is the proportion of potential customers that enter the shop? (c) If the barber could work twice as fast, how much more business would he do?
What do you think about this solution?
We value your feedback to improve our textbook solutions.