Chapter 6: Problem 19
A single repairperson looks after both machines 1 and \(2 .\) Each time it is repaired, machine \(i\) stays up for an exponential time with rate \(\lambda_{i}, i=1,2 .\) When machine \(i\) fails, it requires an exponentially distributed amount of work with rate \(\mu_{i}\) to complete its repair. The repairperson will always service machine 1 when it is down. For instance, if machine 1 fails while 2 is being repaired, then the repairperson will immediately stop work on machine 2 and start on \(1 .\) What proportion of time is machine 2 down?