Chapter 6: Problem 11
Consider a Yule process starting with a single individual-that is, suppose \(X(0)=1\). Let \(T_{i}\) denote the time it takes the process to go from a population of size \(i\) to one of size \(i+1\) (a) Argue that \(T_{i}, i=1, \ldots, j\), are independent exponentials with respective rates i\lambda. (b) Let \(X_{1}, \ldots, X_{j}\) denote independent exponential random variables each having rate \(\lambda\), and interpret \(X_{i}\) as the lifetime of component \(i\). Argue that \(\max \left(X_{1}, \ldots, X_{j}\right)\) can be expressed as $$ \max \left(X_{1}, \ldots, X_{i}\right)=\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{j} $$ where \(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{j}\) are independent exponentials with respective rates \(j \lambda\) \((j-1) \lambda, \ldots, \lambda\) Hint: Interpret \(\varepsilon_{i}\) as the time between the \(i-1\) and the ith failure. (c) Using (a) and (b) argue that $$ P\left[T_{1}+\cdots+T_{j} \leqslant t\right\\}=\left(1-e^{-\lambda t}\right)^{j} $$ (d) Use (c) to obtain $$ P_{1 j}(t)=\left(1-e^{-\lambda t}\right)^{j-1}-\left(1-e^{-\lambda t}\right)^{j}=e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{j-1} $$ and hence, given \(X(0)=1, X(t)\) has a geometric distribution with parameter \(p=e^{-\lambda t}\) (e) Now conclude that $$ P_{i j}(t)=\left(\begin{array}{l} j-1 \\ i-1 \end{array}\right) e^{-\lambda t i}\left(1-e^{-\lambda t}\right)^{j-i} $$