Chapter 5: Problem 96
For the conditional Poisson process, let \(m_{1}=E[L], m_{2}=E\left[L^{2}\right] .\) In terms of \(m_{1}\) and \(m_{2}\), find \(\operatorname{Cov}(N(s), N(t))\) for \(s \leqslant t .\)
Chapter 5: Problem 96
For the conditional Poisson process, let \(m_{1}=E[L], m_{2}=E\left[L^{2}\right] .\) In terms of \(m_{1}\) and \(m_{2}\), find \(\operatorname{Cov}(N(s), N(t))\) for \(s \leqslant t .\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(X\) and \(Y\) be independent exponential random variables with respective rates \(\lambda\) and \(\mu\). (a) Argue that, conditional on \(X>Y\), the random variables \(\min (X, Y)\) and \(X-Y\) are independent. (b) Use part (a) to conclude that for any positive constant \(c\) $$ \begin{aligned} E[\min (X, Y) \mid X>Y+c] &=E[\min (X, Y) \mid X>Y] \\ &=E[\min (X, Y)]=\frac{1}{\lambda+\mu} \end{aligned} $$ (c) Give a verbal explanation of why \(\min (X, Y)\) and \(X-Y\) are (unconditionally) independent.
Let \(X\) be an exponential random variable. Without any computations, tell which one of the following is correct. Explain your answer. (a) \(E\left[X^{2} \mid X>1\right]=E\left[(X+1)^{2}\right]\) (b) \(E\left[X^{2} \mid X>1\right]=E\left[X^{2}\right]+1\) (c) \(E\left[X^{2} \mid X>1\right]=(1+E[X])^{2}\)
Suppose that electrical shocks having random amplitudes occur at times distributed according to a Poisson process \(\\{N(t), t \geqslant 0\\}\) with rate \(\lambda .\) Suppose that the amplitudes of the successive shocks are independent both of other amplitudes and of the arrival times of shocks, and also that the amplitudes have distribution \(F\) with mean \(\mu\). Suppose also that the amplitude of a shock decreases with time at an exponential rate \(\alpha\), meaning that an initial amplitude \(A\) will have value \(A e^{-\alpha x}\) after an additional time \(x\) has elapsed. Let \(A(t)\) denote the sum of all amplitudes at time \(t\). That is, $$ A(t)=\sum_{i=1}^{N(t)} A_{i} e^{-\alpha\left(t-S_{i}\right)} $$ where \(A_{i}\) and \(S_{i}\) are the initial amplitude and the arrival time of shock \(i\). (a) Find \(E[A(t)]\) by conditioning on \(N(t)\). (b) Without any computations, explain why \(A(t)\) has the same distribution as does \(D(t)\) of Example \(5.21\).
There are three jobs that need to be processed, with the processing time of job \(i\) being exponential with rate \(\mu_{i} .\) There are two processors available, so processing on two of the jobs can immediately start, with processing on the final job to start when one of the initial ones is finished. (a) Let \(T_{i}\) denote the time at which the processing of job \(i\) is completed. If the objective is to minimize \(E\left[T_{1}+T_{2}+T_{3}\right]\), which jobs should be initially processed if \(\mu_{1}<\mu_{2}<\mu_{3} ?\) (b) Let \(M\), called the makespan, be the time until all three jobs have been processed. With \(S\) equal to the time that there is only a single processor working, show that $$ 2 E[M]=E[S]+\sum_{i=1}^{3} 1 / \mu_{i} $$ For the rest of this problem, suppose that \(\mu_{1}=\mu_{2}=\mu, \quad \mu_{3}=\lambda .\) Also, let \(P(\mu)\) be the probability that the last job to finish is either job 1 or job 2, and let \(P(\lambda)=1-P(\mu)\) be the probability that the last job to finish is job 3 . (c) Express \(E[S]\) in terms of \(P(\mu)\) and \(P(\lambda)\). Let \(P_{i, j}(\mu)\) be the value of \(P(\mu)\) when \(i\) and \(j\) are the jobs that are initially started. (d) Show that \(P_{1,2}(\mu) \leqslant P_{1,3}(\mu)\). (e) If \(\mu>\lambda\) show that \(E[M]\) is minimized when job 3 is one of the jobs that is initially started. (f) If \(\mu<\lambda\) show that \(E[M]\) is minimized when processing is initially started on jobs 1 and \(2 .\)
Events occur according to a Poisson process with rate \(\lambda=2\) per hour. (a) What is the probability that no event occurs between \(8 \mathrm{P} . \mathrm{M} .\) and \(9 \mathrm{P.M.?}\) (b) Starting at noon, what is the expected time at which the fourth event occurs? (c) What is the probability that two or more events occur between \(6 \mathrm{P.M}\). and 8 P.M.?
What do you think about this solution?
We value your feedback to improve our textbook solutions.