Chapter 5: Problem 89
Some components of a two-component system fail after receiving a shock. Shocks of three types arrive independently and in accordance with Poisson processes. Shocks of the first type arrive at a Poisson rate \(\lambda_{1}\) and cause the first component to fail. Those of the second type arrive at a Poisson rate \(\lambda_{2}\) and cause the second component to fail. The third type of shock arrives at a Poisson rate \(\lambda_{3}\) and causes both components to fail. Let \(X_{1}\) and \(X_{2}\) denote the survival times for the two components. Show that the joint distribution of \(X_{1}\) and \(X_{2}\) is given by $$ P\left\\{X_{1}>s, X_{1}>t\right\\}=\exp \left\\{-\lambda_{1} s-\lambda_{2} t-\lambda_{3} \max (s, t)\right\\} $$ This distribution is known as the bivariate exponential distribution.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.