Chapter 5: Problem 83
Suppose that \(\left[N_{0}(t), t \geqslant 0\right\\}\) is a Poisson process with rate \(\lambda=1\). Let \(\lambda(t)\) denote a nonnegative function of \(t\), and let $$ m(t)=\int_{0}^{t} \lambda(s) d s $$ Define \(N(t)\) by $$ N(t)=N_{0}(m(t)) $$ Argue that \(\\{N(t), t \geqslant 0\\}\) is a nonhomogeneous Poisson process with intensity function \(\lambda(t), t \geqslant 0\) Hint: Make use of the identity $$ m(t+h)-m(t)=m^{\prime}(t) h+o(h) $$