Chapter 5: Problem 82
Let \(X_{1}, X_{2}, \ldots\) be independent positive continuous random variables with a common density function \(f\), and suppose this sequence is independent of \(N, a\) Poisson random variable with mean \(\lambda\). Define $$ N(t)=\text { number of } i \leqslant N: X_{i} \leqslant t $$ Show that \(\\{N(t), t \geqslant 0\\}\) is a nonhomogeneous Poisson process with intensity function \(\lambda(t)=\lambda f(t)\).